首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为提高对复杂地形风资源特性及其形成机制的认识,改进复杂地形风场数值模拟方法,分别选取代表极大起伏山地与宽谷地形的藏南谷地、代表极大起伏山地与深谷地形的横断山区以及代表中、小起伏丘陵山地的山西高原开展风资源特性观测实验,分析不同典型复杂地形条件下天气背景风场、局地大气环流、地形动力强迫、地表摩擦与热力作用对风资源特性形成的贡献,结果表明:山西高原局地大气环流的作用较小;藏南谷地和横断山区的山谷风环流对其风能资源特性的形成起主要作用,尤其是横断山区还存在多尺度的局地大气环流,传统的风电场风资源CFD数值模拟不足以描述如此复杂的风场。因此,在局地大气环流作用明显的复杂地形地区,需要采用中尺度与CFD结合的风电场选址风资源数值模拟方法。  相似文献   

2.
随着新能源行业的深入发展,风电行业发展更为迅速,对于一个风电项目而言,研究其风资源分布特性尤为重要。中国内陆地形较为复杂,大部分为山地丘陵。受地形的影响,风资源分布特性较为复杂,评估较为困难。先建立余弦型的丘陵地形物理模型,分别采用CFD数值模拟、风洞实验2种方法对丘陵地形周围流场进行模拟仿真与实验测试,通过对丘陵迎风坡、背风坡特定参考点水平风速、垂直风速变化特征的分析,归纳总结了丘陵地形周围风资源分布特征,为丘陵地形下风能开发利用提供一定的参考。  相似文献   

3.
利用中尺度MM5气象模式系统,对大连及其近海地区风场进行了较为系统的高分辨率数值模拟,定性及定量地得到了该地区10 m高度处的年平均风速等直线图、年有效风能小时数等值线图、年有效风能功率等值线图及长海地区的年风玫瑰图,进一步研究了该地区年有效风能功率密度沿垂直高度的变化。综合考虑该地区沿海水深、港口运输及水产养殖等因素的影响,建设性地提出了3个近海风能重点开发区域,并给出了这3个地区的年风速分布概率情况。基于MM5模式的数值评估结果,为该地区近海风资源的开发利用提供了重要的参考依据。  相似文献   

4.
许昌  杨建川  韩星星 《太阳能学报》2015,36(12):2844-2851
针对复杂地形条件下风电场微观选址技术难度大的问题,提出一种基于数值计算结果和高效优化方法的微观选址优化算法。将测风数据按风向等分成12个扇区,并利用平均风速和CFD对复杂地形的每个扇区进行数值模拟,得到风电场各扇区的风资源分布,提取轮毂高度处的风速和风向分布。优化中风力机的尾流影响采用Jensen尾流模型,风电场风能计算中风速按照威布尔分布处理,并考虑每个扇区风速的大小、概率密度。目标函数为整个风电场的输出功率倒数的对数,自变量为风力机在给定风电场中的位置坐标,约束条件为地形边界和风力机之间的最小距离,优化算法采用该文提出的改进小生境粒子群算法(NCPSO),优化风力机组微观选址的最优解。该文提出优化算法得到的结果与基于高度的经验布置方法(EX-TH)、基于风能密度的经验布置方法(EX-PH)以及普通粒子群算法(PSO)进行比较,证明在复杂地形条件下所提出方法的可靠性与有效性,并可应用于工程实践。  相似文献   

5.
基于地理信息系统,研究并提出一种基于ArcGIS与多因子模型的风力发电场选址评估方法,以实现对不同地区风能资源空间分布情况、开发适宜性和理论发电量的有效评估,进而为风电场的选址提供理论依据。首先,基于不同地区的风资源气象数据,通过引入地形、道路等地理限制因素,提出一种多因子模型,以实现对不同地区风能资源开发适宜性评估。然后,基于10 m高度处的风速分布,通过风速外推得到80 m高度处的风速分布,进而用于评估80 m高度处的风能理论发电量。最后,综合上述开发适宜性和理论发电量评估结果,可较为准确地给出计及风速、风功率密度、地形、道路等多因子模型的风电场选址建议。结果发现:风电场选址主要集中在西北部、东北部以及内蒙古等地。  相似文献   

6.
李艳  王元 《太阳能学报》2007,28(6):663-669
利用MM5作为风能模拟模式,以地形复杂、气候背景特殊的海陵岛地区为研究区域,采用甚高分辨率(水平分辨率200m,最高垂直分辨率是10m)的模式设计,模拟了秋季海陵岛地区的风资源分布。研究表明,中尺度数值模式MM5的甚高分辨率的模式设计可以作为复杂海岛地形风资源评估的有效手段;海陵岛地区有效风能密度的大值区多数位于150~200W·m~(-2)之间,这说明我国沿海地区复杂地形地貌条件下潜在的风能资源完全可以开发利用,并需要更加深入而客观的评估。  相似文献   

7.
通过908专项调查资料和中尺度气象模式MM5(the Fifth generation Mesoscale Model)相融合的方法为我国近海风能资源评估提供一定时空分辨率的风场。本文主要探讨了将GTS常规观测资料、908专项调查资料和卫星遥感风场反演资料计入中尺度气象模式MM5的同化方法,同化美国NCEP水平分辨率为1°×1°的2007年-2008年再分析数据,重构了分辨率为0.1°×0.1°风场,对我国近海进行了两个模拟试验,并将不同模拟结果与实测值进行比较。结果表明,时空分辨率较高的观测资料同化风场模拟结果具有一定的改善作用。根据模拟结果计算了我国近海10m高度处平均风速、平均风功率密度和总蕴藏量等风能资源评估参数。计算结果表明:我国近海海洋风能资源总蕴藏量约为8.83×108kW,其中江苏、福建、广东和山东海洋风能资源丰富,辽宁和浙江海洋风能较为丰富。  相似文献   

8.
[目的]分析了大气稳定度对风机出力的影响,为提高计算流体动力学(Computational Fluid Dynamics,CFD)风能资源模拟精度提供技术参考。[方法]选取立于平坦和复杂山地两类典型地形上的两座测风塔不同高度的风速、气温、气压等观测数据,使用莫宁-奥布霍夫长度法分别计算两座测风塔所在区域的大气稳定度,参照Irwin大气稳定分类标准对稳定度计算结果分类,再根据分类结果进行两座测风塔轮毂高度处出力分析。[结果]结果表明:在近地面层,复杂山地大气热效应造成的表层垂直混合作用更为明显,造成的大气不稳定性较为强烈,但垂直混合作用不充分;复杂山地大气稳定度对风机出力的影响大于平坦地形,其不确定性更强。[结论]在进行CFD风电场流体建模时需要考虑大气稳定度的影响,特别是超低风速复杂山地场址条件下,大气稳定度的评估对风机选型及发电量仿真精度尤为重要。  相似文献   

9.
利用松门山-吉山风场70m测风塔2009年4月~2010年3月测风资料及都昌气象站近20a平均风速资料,对松门山-吉山地区的风能资源参数进行了详细计算和分析,并对松门山-吉山风能资源开发利用进行了可行性分析评价。结果表明:松门山-吉山测风塔各高度层全年盛行偏北风,主导风向为N和NNE,主导风向风能占总风能的90%左右。30~70m高度湍流强度和风切变指数较小。50、70m高度处风能资源有效小时百分率为73﹪~76%,风功率密度分别为302.8、326.7W/m2,风能资源等级为3级,属风能资源较丰富区,具备风电开发价值。  相似文献   

10.
为了验证WindCube激光雷达在不同地形和不同测量高度条件下替代测风塔评估风资源的可行性,文章采用WindCube激光雷达与测风塔在复杂山地、平原和沿海3种地形条件下的同步观测试验数据,对风速、风向、相对偏差和风廓线进行了对比分析。对比结果表明:WindCube测量高度越高,有效数据完整率越低,在90~120 m轮毂高度,有效数据完整率在90%以上,能满足风能资源评估要求;在复杂山地、平坦地形条件下,WindCube与测风塔风速相关系数达0.99以上,风向相关系数在0.85~0.90,两种仪器测得的10 min平均风速偏差在0.1 m/s以内,相对偏差在1%左右,WindCube可代替测风塔进行风能资源评估;沿海地形条件下,WindCube与测风塔风速相关系数达0.90以上,风向相关系数在0.90左右,WindCube与测风塔测得的10 min平均风速偏差较大,达0.5 m/s,相对偏差在10%左右,受下垫面影响,WindCube替代测风塔进行风能资源评估的可行性应根据项目实际情况进一步评估。  相似文献   

11.
为提高低风速区分散式风电项目的风资源评估精度,降低测风成本,在对三参数Weibull分布参数估计和外推的研究基础上,提出基于概率加权矩法(PWMM)的三参数Weibull分布参数垂直外推方法。利用较低高度处风速统计的概率加权矩,经垂直外推得到平坦地形、较高高度处风速Weibull分布的参数,进而得到Weibull分布函数和风功率密度。算例分析表明:基于PWMM的三参数Weibull分布参数垂直外推法在平坦地形不同测风点处有一定的适用性外推较高高度处风速Weibull分布的参数,可有效体现平坦地形低风速区的风速分布特征,提高风功率密度评测精度。  相似文献   

12.
西藏地处青藏高原的主体,平均海拔4000米以上,气温较低,空气密度小,由图1可知,风力机的平均出力在65%以下。根据表1的划分,西藏是我国的一个大风区。若仅从风速考虑,西藏大部分地区属Ⅱ区;若综合考虑,则属Ⅲ区。由于西藏地质构造复杂,各地地形大相径庭,又造成了相近地区风资源时空分布的大起大落。全区风速年际变化大,且多龙卷风,似乎不利于风能利用,但众多局部风能丰富区又为合理利用风能提供  相似文献   

13.
在风资源评估过程中,平均风速、风切变指数、风功率密度等是必须测量的特性参数,这些参数的测量均受地形地貌、大气稳定度、测风时间、测风设备的影响。在目前的风资源评估中,大气稳定度的影响基本都被忽略,因此,影响了风资源评估的准确性,甚至会带来选址的决策性失误。文章研究了大气稳定度对风资源特性的影响,并以美国某地4年的测风数据为例,研究大气稳定度对风切变指数,风能玫瑰图,风功率密度等的影响,建立了考虑大气稳定度的轮毂高度风速外推模型,解决了目前风资源评估中外推轮毂高度风速时由于使用整个风电场的平均风切变指数而带来风资源评估误差的问题。算例结果表明,该模型结构简单,外推结果精度高,具有较强的工程实用价值。  相似文献   

14.
周武  黄小丹 《能源与环境》2010,(4):66-67,96
利用位于阳江沿海大沟镇的80m测风塔和周边自动气象站资料,分析不同地理位置、不同天气系统影响下沿海地区风能资源的差异。得到海岸线海区的风速要远大于岸区的风速,岸区风速随高度增加而增大。冬季冷空气影响期间,50 m以上是优异的风电场,但风速受地形的影响也大。海风也能产生3m/s以上的有效风速,风能资源近海相对海岸线更有利。  相似文献   

15.
利用基于计算流体力学(CFD) 的风能资源评估系统软件WindSim,在不同水平网格分辨率条件下对我国黄土高原地区陕西靖边县境内某风电场2010年7月~2011年6月的风资源情况进行了模拟,并将模拟结果与测风塔观测结果进行了对比分析。结果表明,在低水平网格分辨率下,WindSim对风能资源的空间分布模拟主要以海拔高度为基础,对局地地形的影响并不能很好地反映,模拟风速误差较大;提高分辨率后,对风能资源空间分布的模拟能力明显提高,模拟风速的误差也显著减小。但不同分辨率下的风速频率和风向频率分布并无显著差别,不能很好地体现出风能特性。通过估算发电量发现,输入不同测风塔资料得到的发电量差异较大,说明在地形较为复杂的风电场,应多布设测风塔,以期得到较为准确的发电量结果。  相似文献   

16.
马文通  刘青海  李凯  王帅 《风能》2013,(11):80-86
复杂地形和低风速风电场风能资源评估过程中,在缺少实测数据的情况下寻找风能资源丰富的开发区域,对提高风电场的盈利能力具有重要的现实意义。本文针对风电场开发前期有效数据匮乏的情况,在传统风能资源评估系统的基础上,引入大气模式进行大范围计算获得中尺度计算结果,同时引入陆地卫星遥感资料处理技术,获得大范围高精度的地表粗糙度信息,结合计算流体动力学技术对中尺度数据进行降尺度,建立大气模式和计算流体动力学技术双核心的风能资源评估系统。本文所建立的先进风能资源评估系统可以满足复杂地形和低风速风电场风能资源评估的工程需要,从而拓宽了风能资源评估的途径。  相似文献   

17.
《节能》2020,(3)
根据甘肃省某区域风电场测风塔10 m、40 m、60 m、80 m高度的实测风数据,利用Windographer4.2风资源分析软件计算空气密度、平均风速和风功率密度年内变化和日变化、风速和风能频率分布、风向频率和风能频率方向分布、风切变指数、湍流强度和50年一遇最大风速等指标参数。其计算结果表明测风塔80 m高度年平均风速为6.93 m/s,年平均风功率密度为354 W/m~2,年有效风速(3.0~25.0 m/s)时数为7 200 h以上,盛行风向稳定。60~80 m高度湍流强度在0.072~0.080之间,小于0.12,湍流强度较小。综合判定该区域风能资源较为丰富,符合大型风电场建设条件,适宜进行大规模风电开发利用。  相似文献   

18.
新疆达坂城风电场风能资源特性分析   总被引:13,自引:0,他引:13  
对新疆达坂城风电场的风能资源特性进行了详细的研究。基于在达坂城风电场实测的10m和24m高程的10min平均风速数据,分析了原始风速的分布特性。根据地表风速沿高度呈风剪指数分布的特性,计算了在各个轮毂高度上的风速分布。采用最小误差逼近算法原理,计算了风速韦布尔分布的参数以及平均风速和分布方差。通过对韦布尔分布的分析,计算了各个高度上风电场的平均风功率密度、有效平均风功率密度和可利用小时数等风能资源特性参数,为当地的风能开发提供分析基础。  相似文献   

19.
为了探究典型丘陵不同高宽比下迎风坡的风资源分布特征,采用势流叠加理论与源板块法相结合,建立典型丘陵山地风场数学模型,利用MATLAB对典型丘陵地形下风场内的风资源特征进行仿真计算,分析3种不同坡度地形条件下位于迎风坡6个典型参考点在不同相对地面高度处水平方向风加速因子和垂直方向相对风速的变化规律;采用CFD软件分析各个参考点的湍流强度随相对地面高度的变化规律,确定合适的风机安装高度和位置。研究结果表明:丘陵地形高宽比在0.25~0.5时,随着高宽比的增加迎风坡上的风加速效应主要集中在垂直速度方向;TI值和强湍流区的变化趋势与地形的高宽比成正比。  相似文献   

20.
利用MERRA2再分析数据驱动WRF模式,对四川凉山州地区2020年全年进行风资源模拟分析,并用凉山州地区典型测风塔数据对模拟结果进行检验,并进行详细地风资源分析,再根据风电场开发8%基准内部收益率反推可开发风能资源的区域分布。结果表明:凉山州大部分地区100 m高度年平均风速在5 m/s以上,风速极大值一般位于山脊,凉山州风能最好的区域主要集中在会东县和宁南县。凉山州典型区域内均表现出受西南季风影响的特征,即冬、春季节风大,夏、秋季节风小,主风向呈强西南风状态,且风功率密度变化规律与风速的变化规律基本一致。凉山州山地区域可开发风能资源的平均风功率密度临界值为258 W/m2,这些区域主要集中在会理、会东、宁南、布拖、木里和盐源县境内。可开发区域分布图对指导凉山州地区风能开发提供科学参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号