首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
膳食纤维改性研究进展   总被引:7,自引:0,他引:7  
大量研究证实,膳食纤维改性后理化性质具有明显优越性,能更好发挥其生理功能。该文综述化学处理法、机械降解处理法、微生物发酵与酶法和混合处理法在膳食纤维改性中应用进展,阐明改性膳食纤维发展前景,旨在为今后膳食纤维研究与开发提供参考。  相似文献   

2.
不溶性膳食纤维结构特性导致食品加工功能特性不明显,应用受到限制。近些年,食品研究人员通过各种改性方法改善不溶性膳食纤维的溶解度及功能特性。综述物理改性的方法、物理改性对膳食纤维结构及加工功能特性的影响、物理改性对膳食纤维生理功能的影响。物理改性改变膳食纤维的微观结晶结构、增加颗粒的表面积、增加可溶性膳食纤维的含量,使膳食纤维的加工功能特性如水合特性、乳化特性、流变特性等发生改变,进而也影响其生理功能特性,如葡萄糖吸附能力、离子交换能力、硝酸盐吸附能力及胆固醇吸附能力,并对人体产生积极意义,改性后的膳食纤维在食品工业中应用更广泛。研究结果可为膳食纤维改性技术路线、加工功能特性改善提供参考。  相似文献   

3.
膳食纤维改性研究进展   总被引:1,自引:0,他引:1  
膳食纤维是人体不可缺少的重要营养素,其中可溶性成分含量是评定其生理功能的重要因素。天然存在的膳食纤维多为不溶性的,因此,对天然膳食纤维进行改性是目前该领域的研究热点。对膳食纤维的化学、物理、生物法改性研究进展进行综述。  相似文献   

4.
米糠是稻谷加工的副产物,富含膳食纤维,但由于水溶性膳食纤维含量低、功能特性差等问题,米糠膳食纤维并未得到有效利用。介绍了国内外有关米糠膳食纤维的改性及改性对米糠膳食纤维功能特性影响的研究进展,以期为米糠膳食纤维的开发利用提供参考。  相似文献   

5.
面粉在精加工过程中会损失大量膳食纤维(DF),而DF被认为是健康饮食中的重要组成成分,具有多种生理活性。文章介绍了DF常见的改性方法,总结归纳了DF经改性后在理化性质和生理活性方面的变化规律及原因,综述了其在面团、饼干、面条、面包、馒头和蛋糕等方面的应用现状,并指出了目前存在的一些问题及今后的发展方向。  相似文献   

6.
膳食纤维改性的研究进展   总被引:6,自引:0,他引:6  
研究表明膳食纤维改性后具有更加优越的理化性质,通过对膳食纤维改性方法以及改性后理化性质的综述,为进一步研究膳食纤维的应用提供参考。  相似文献   

7.
膳食纤维具有良好的生理功能,对人体健康发挥着重要作用。综述了蒸汽爆破技术对食品副产物中膳食纤维的改性作用以及对膳食纤维的结构特性、理化性质、功能特性的影响。蒸汽爆破处理可以将膳食纤维中的部分不溶性膳食纤维转变为可溶性膳食纤维,来增加食品及其副产品中可溶性膳食纤维的含量,提高膳食纤维的品质,以期能将高品质的膳食纤维应用于食品加工中,提高膳食纤维的利用率。蒸汽爆破处理可以显著提高膳食纤维的理化功能特性,有助于更好的开发膳食纤维功能性食品。  相似文献   

8.
介绍了膳食纤维的分类、结构及理化特性,综述了国内外近年来关于膳食纤维改性方法及其理化特性的相关文献,并对膳食纤维理化特性及其改性方法的发展方向进行了展望。  相似文献   

9.
膳食纤维改性技术研究进展   总被引:1,自引:0,他引:1  
膳食纤维是不能被人体消化的多糖类碳水化合物及木质素的总称,由水溶性膳食纤维(SDF)和非水溶性膳食纤维(IDF)组成。SDF组成比例是影响膳食纤维生理功能的重要因素。膳食纤维改性技术是提高SDF含量,提升膳食纤维物理化学特性及生理功能的关键技术。本文结合当今国内外研究结论,从物理、化学、生物和联合处理四个方面就膳食纤维改性技术研究进展进行综述,探讨了改性对膳食纤维品质的影响,旨在为相关领域研究者提供理论参考。  相似文献   

10.
农业废弃物综合利用,是当前世界各国亟待解决的问题.在花生加工生产的过程中,产生了大量的花生壳,但是目前花生壳绝大部分被当做废弃物或是燃料,只有少部分应用于饲料、蘑菇基质等少数利润空间较低的方面,价格低廉,利用率较低,没有做到真正的物尽其用,造成了较大的资源浪费.而花生壳中膳食纤维含量较高,对花生壳膳食纤维的深入研究,可...  相似文献   

11.
不同膳食纤维改性技术研究进展   总被引:1,自引:0,他引:1  
可溶性膳食纤维(SDF)由于具有预防肠道疾病、冠心病、糖尿病等生理功能而受到各国研究者的重视,如何提高可溶性膳食纤维含量,进一步提高其理化性质及生理活性已成为食品领域的研究热点.本文结合近年来国内外相关研究结论,分别从化学处理、生物技术处理、物理处理和联合处理技术四个方面就膳食纤维的改性技术研究进展进行综述,旨在为相关领域研究者提供理论参考.  相似文献   

12.
利用高温高压、蒸煮、超声三种手段分别对小米水溶性膳食纤维进行物理改性,以探究不同物理改性对小米水溶性膳食纤维的理化性质及结构的影响。结果表明,改性后小米水溶性膳食纤维的化学基团无明显变化,表面出现裂痕,结构疏松多孔,有团聚现象,热稳定性上升,持水力、水膨胀力、持油力、结合脂肪能力均得到提高,其中经超声处理后四种能力提高最为显著(P<0.05),分别提高101.82%,36.67%,63.86%,33.08%;通过测定处理后的水溶性膳食纤维总抗氧化能力,发现经超声处理后的水溶性膳食纤维总抗氧化能力较强(P<0.05)。综上所述,三种物理改性手段均对小米水溶性膳食纤维的理化性质及结构特性具有一定影响,其中经超声处理后的小米水溶性膳食纤维理化性质改善较明显。  相似文献   

13.
提高豆渣膳食纤维的可溶性改性研究进展   总被引:5,自引:0,他引:5  
本文综述了豆渣膳食纤维的机械物理、酶处理、微生物发酵等改性研究,并阐述了提高豆渣膳食纤维可溶性的机理.  相似文献   

14.
膳食纤维具有调节胃肠道和预防慢性疾病等重要的生理功能,被誉为第七大营养素,但不同膳食纤维功能特性不同,因此,高活性膳食纤维的研发以及应用于食品加工和作为保健(功能)食品成为目前食品行业关注的热点。豆渣是大豆加工副产品,富含膳食纤维,但主要是不溶性膳食纤维(IDF),可溶性膳食纤维(SDF)含量极低,导致豆渣口感较差,在食品加工中的应用受限。本文综述了不同膳食纤维功能特性及比较了不同改性方法的工作原理和对豆渣膳食纤维中SDF的影响,为不同来源IDF的改性及豆渣膳食纤维的加工利用提供支持。  相似文献   

15.
《中国食品添加剂》2020,(1):172-178
膳食纤维被称为人类的"第七种营养素",具有较强的生物活性和生理功能,竹笋中得膳食纤维含量丰富,对人体健康颇有益处。该文从竹笋膳食纤维的组成成分、改性原因及改性方法进行了剖析与总结。目前为止,竹笋膳食纤维的主要改性方法有化学法、酶改性法、发酵法、高压均质法、双螺旋挤出法、超微粉碎法和联合改性等,各种改性方法均有优缺点,本文对上述几种改性方法的研究进展进行了详细综述,以期为竹笋膳食纤维的研究、开发、应用提供参考和启示。  相似文献   

16.
17.
《食品工业科技》2013,(09):392-395
可溶性膳食纤维(SDF)由于具有预防肠道疾病、冠心病、糖尿病等生理功能而受到各国研究者的重视,如何提高可溶性膳食纤维含量,进一步提高其理化性质及生理活性已成为食品领域的研究热点。本文结合近年来国内外相关研究结论,分别从化学处理、生物技术处理、物理处理和联合处理技术四个方面就膳食纤维的改性技术研究进展进行综述,旨在为相关领域研究者提供理论参考。   相似文献   

18.
通过分析物理改性对燕麦麸皮不溶性膳食纤维特性的影响,为进一步研究水不溶性燕麦麸皮膳食纤维的保健功能提供科学依据。采用以500 MPa 20 min 60℃超高压、1500 W 30 min超声波及其联合的方法处理不溶性膳食纤维,分析了物理改性对燕麦麸皮不溶性膳食纤维比面积和粒度、持油性、持水性、膨胀度、悬浮粘度、离子交换能力的影响。结果表明:超高压联合超声波处理比两者单独处理效果显著(p<0.05),以1%燕麦麸皮IDF为例,两者联合处理能显著(p<0.05)增加燕麦麸皮不溶性膳食纤维比面积13.49倍、持油性2.92倍、膨胀度、粘度值和阳离子交换能力,减少纤维粒度2.8倍,减少持水性2.25倍(持水性以16%燕麦麸皮IDF为例)。因此认为物理改性能加大燕麦麸皮不溶性膳食纤维的综合利用,提高农产品的附加值和食品资源的再利用程度。   相似文献   

19.
膳食纤维作为第七大营养素,在调节人体正常生理代谢过程,预防心脑血管疾病、糖尿病、高血压、高血脂等多种疾病方面有着重要的作用,目前多应用于食品行业、药品研制及保健品开发等方面。该文就膳食纤维的组成结构及其化学特性、几种常见的膳食纤维改性方法及改性膳食纤维在结构和生理方面的功能特性等相关研究结果进行介绍,对农副产品中膳食纤维的合理开发利用和如何寻找更为优良的改性方法做出展望,以期为膳食纤维的进一步研究和功能性应用提供支持。  相似文献   

20.
合理摄入膳食纤维对机体健康至关重要。为了开发兼顾营养、感官与健康的膳食纤维强化食品,不溶性膳食纤维的分离提取与改性研究广受关注。大量研究运用物理作用力、化学反应或酶解等手段,对样品组成、结构以及性质进行改造,以强化其在食品加工与营养健康方面功能特性。改性产物作为添加成分对于食品的加工过程、产品品质及健康功效方面具有积极影响,有利于各类膳食纤维强化产品的开发。本文对近年来国内外文献报道的不溶性膳食纤维的提取、改性及应用相关研究成果进行梳理总结,以期为调控膳食纤维功能特性、开发高品质健康功能食品提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号