首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王惜民  范睿 《计算机应用研究》2021,38(10):2968-2973
考虑移动边缘计算下的联邦学习,其中全局服务器通过网络连接大量移动设备共同训练深度神经网络模型.全局类别不平衡和设备本地类别不平衡的数据分布往往会导致标准联邦平均算法性能下降.提出了一种基于组合式多臂老虎机在线学习算法框架的设备选择算法,并设计了一种类别估计方案.通过每一轮通信中选取与前次全局模型的类别测试性能偏移最互补的设备子集,使得训练后线性组合的全局模型各类别测试性能更平衡,从而获得更快的收敛性、更稳定的训练过程以及更好的测试性能.数值实验充分探究了不同参数对基于类别不平衡联邦平均算法的影响,以及验证了所提设备选择算法的有效性.  相似文献   

2.
随着大数据、云计算等领域的蓬勃发展,重视数据安全与隐私已经成为世界性的趋势,不同团体为保护自身利益和隐私不愿贡献数据,形成了数据孤岛.联邦学习使数据不出本地就可被多方利用,为解决数据碎片化和数据隔离等问题提供了解决思路.然而越来越多研究表明,由谷歌首先提出的联邦学习算法不足以抵抗精心设计的隐私攻击,因此如何进一步加强隐私防护,保护联邦学习场景下的用户数据隐私成为一个重要问题.对近些年来联邦学习隐私攻击与防护领域取得的成果进行了系统总结.首先介绍了联邦学习的定义、特点和分类;然后分析了联邦学习场景下隐私威胁的敌手模型,并根据敌手攻击目标对隐私攻击方法进行了分类和梳理;介绍了联邦学习中的主流隐私防护技术,并比较了各技术在实际应用中的优缺点;分析并总结了6类目前联邦学习的隐私保护方案;最后指出目前联邦学习隐私保护面临的挑战,展望了未来可能的研究方向.  相似文献   

3.
在联邦学习中,由于用户的本地数据分布会随着用户所在地以及用户偏好而变动,数据的非独立同分布下的用户数据可能缺少某些标签类别的数据,在模型聚合中显著影响了迭代更新速率和最终的模型性能。为了解决这一问题,提出了一种基于条件生成对抗网络进行联邦数据增强的算法,能够在不涉及泄露用户隐私的前提下,通过生成对抗网络模型对数据偏斜的参与者扩增少量数据,大幅提升非独立同分布数据划分下联邦学习算法的性能。实验结果表明,与当前主流的联邦算法相比,该算法在非独立同分布设置下的MNIST,CIFAR-10数据集上的预测精度分别提升了1.18%和14.6%,显示出了该算法对非独立同分布问题的有效性和实用性。  相似文献   

4.
针对大部分联邦学习防御方法存在降低联邦学习实用性、计算效率低和防御攻击种类单一等问题,文章提出一种基于变分自编码器的属性修改框架,在客户端对数据预处理以达到保护联邦学习的目的。首先,为了提高算法计算效率,文章提出一种基于迁移学习的变分自编码器训练方案来减少客户端训练周期;其次,利用变分自编码器具有连续性的潜变量,设计了一种基于属性分布约束规则的属性修改方案来实现客户端训练数据的重构。实验结果表明,属性修改方案可以成功分离和控制图像的属性向量,通过将原始图像改变为带有相应属性的重构图像,保护了客户端数据隐私。将修改后的图像用于训练联邦学习分类任务,其准确率可达94.44%,体现了方案的可用性,并且该方案可以成功防御非主属性隐私泄露和基于数据中毒的后门攻击。  相似文献   

5.
教师模型全体的隐私聚合(PATE)是一种重要的隐私保护方法,但该方法中存在训练数据集小时训练模型不精确的问题。为了解决该问题,提出了一种基于联邦学习的PATE教师模型聚合优化方法。首先,将联邦学习引入到教师模型全体隐私聚合方案的教师模型训练中,用来提高训练数据少时模型训练的精确度。其次,在该优化方案中,利用差分隐私的思想来保护模型参数的隐私,以降低其被攻击的隐私泄露风险。最后,通过在MNIST数据集下验证该方案的可行性,实验结果表明,在同样的隐私保护水平下该方案训练模型的精确度优于传统的隐私聚合方案。  相似文献   

6.
在联邦学习背景下,由于行业竞争、隐私保护等壁垒,用户数据保留在本地,无法集中在一处训练.为充分利用用户的数据和算力,用户可通过中央服务器协同训练模型,训练得到的公共模型为用户共享,但公共模型对于不同用户会产生相同输出,难以适应用户数据是异质的常见情形.针对该问题,提出一种基于元学习方法 Reptile的新算法,为用户学习个性化联邦学习模型. Reptile可高效学习多任务的模型初始化参数,在新任务到来时,仅需几步梯度下降就能收敛到良好的模型参数.利用这一优势,将Reptile与联邦平均(federated averaging, FedAvg)相结合,用户终端利用Reptile处理多任务并更新参数,之后中央服务器将用户更新的参数进行平均聚合,迭代学习更好的模型初始化参数,最后将其应用于各用户数据后仅需几步梯度下降即可获得个性化模型.实验中使用模拟数据和真实数据设置了联邦学习场景,实验表明该算法相比其他算法能够更快收敛,具有更好的个性化学习能力.  相似文献   

7.
尹春勇  屈锐 《计算机应用》2023,(4):1160-1168
联邦学习(FL)可以有效保护用户的个人数据不被攻击者获得,而差分隐私(DP)则可以实现FL的隐私增强,解决模型训练参数导致的隐私泄露问题。然而,现有的基于DP的FL方法只关注统一的隐私保护预算,而忽略了用户的个性化隐私需求。针对此问题,提出了一种两阶段的基于个性化差分隐私的联邦学习(PDP-FL)算法。在第一阶段,依据用户的隐私偏好对用户隐私进行分级,并添加满足用户隐私偏好的噪声,以实现个性化隐私保护,同时上传隐私偏好对应的隐私等级给中央聚合服务器;在第二阶段,为实现对全局数据的充分保护,采取本地和中心同时保护的策略,并根据用户上传的隐私等级,添加符合全局DP阈值的噪声,以量化全局的隐私保护水平。实验结果表明,在MNIST和CIFAR-10数据集上,PDP-FL算法的分类准确度分别为93.8%~94.5%和43.4%~45.2%,优于基于本地化差分隐私的联邦学习(LDP-Fed)和基于全局差分隐私的联邦学习(GDP-FL),同时满足了个性化隐私保护的需求。  相似文献   

8.
随着数据孤岛的出现和隐私意识的增强,传统的中心化的机器学习模式遇到了一系列挑战。联邦学习作为一种新兴的隐私保护的分布式机器学习模型迅速成为一个热门的研究问题。有研究表明,机器学习模型的梯度会泄露用户数据集的隐私,能够被攻击者利用以获取非法的利益,因此,需要采用一些隐私保护的机制来保护这种敏感信息。本文研究了当前联邦学习系统中采用的隐私保护机制,并根据研究者采用的隐私保护技术,将联邦学习中的隐私保护机制分为五类,总结了不同的隐私保护机制的研究思路和研究进展。通过对当前联邦学习中使用的隐私保护机制的研究,联邦学习系统的设计人员可以提高联邦学习系统的安全性,更好地保护数据隐私。  相似文献   

9.
排序学习(learning-to-rank,简称LTR)模型在信息检索领域取得了显著成果,而该模型的传统训练方法需要收集大规模文本数据.然而,随着数据隐私保护日渐受到人们重视,从多个数据拥有者(如企业)手中收集数据训练排序学习模型的方式变得不可行.各企业之间数据被迫独立存储,形成了数据孤岛.由于排序模型训练需要使用查询...  相似文献   

10.
联邦学习是解决多组织协同训练问题的一种有效手段,但是现有的联邦学习存在不支持用户掉线、模型API泄露敏感信息等问题。文章提出一种面向用户的支持用户掉线的联邦学习数据隐私保护方法,可以在用户掉线和保护的模型参数下训练出一个差分隐私扰动模型。该方法利用联邦学习框架设计了基于深度学习的数据隐私保护模型,主要包含两个执行协议:服务器和用户执行协议。用户在本地训练一个深度模型,在本地模型参数上添加差分隐私扰动,在聚合的参数上添加掉线用户的噪声和,使得联邦学习过程满足(ε,δ)-差分隐私。实验表明,当用户数为50、ε=1时,可以在模型隐私性与可用性之间达到平衡。  相似文献   

11.
为解决临床医学量表数据类别不均衡容易对模型产生影响,以及在处理量表数据任务时深度学习框架性能难以媲美传统机器学习方法问题,提出了一种基于级联欠采样的Transformer网络模型(layer by layer Transformer, LLT)。LLT通过级联欠采样方法对多数类数据逐层删减,实现数据类别平衡,降低数据类别不均衡对分类器的影响,并利用注意力机制对输入数据的特征进行相关性评估实现特征选择,细化特征提取能力,改善模型性能。采用类风湿关节炎(RA)数据作为测试样本,实验证明,在不改变样本分布的情况下,提出的级联欠采样方法对少数类别的识别率增加了6.1%,与常用的NEARMISS和ADASYN相比,分别高出1.4%和10.4%;LLT在RA量表数据的准确率和F1-score指标上达到了72.6%和71.5%,AUC值为0.89,mAP值为0.79,性能超过目前RF、XGBoost和GBDT等主流量表数据分类模型。最后对模型过程进行可视化,分析了影响RA的特征,对RA临床诊断具有较好的指导意义。  相似文献   

12.
为解决典型联邦学习框架在训练样本数据分布不均衡情况下产生的聚合模型对各个客户端模型不公平的问题,结合区块链的去中心化、不可篡改性以及智能合约的特点,提出基于本地数据特征的公平性联邦学习模型,以实现数据分布差异的客户模型可信安全共享。多个客户端通过区块链上传本地参数以及信用值,利用区块链的共识机制选择信用值最高的区块进行模型聚合,在模型聚合过程中按照节点信用依次进行融合,并根据区块链记录工作节点的本地模型参数作为证据,完成整体模型参数的聚合任务,在此基础上通过广播下传当前聚合模型参数,模型利用区块链的共识机制可降低参数在传输过程中所面临的安全风险。在开源数据集上的实验结果表明,该模型相较FedAvg模型训练精度提高40%,不仅能够优化非独立同分布下的模型训练精度,同时可以防止中间参数传输信息泄露,保证了多个客户端的利益与安全隐私,从而实现具有隐私保护的公平性模型。  相似文献   

13.
随着移动设备自身存储和计算能力的提升,越来越多移动设备在本地进行数据处理,如传感器,智能穿戴设备和车载应用等。当前机器学习技术在计算机视觉,自然语言处理,模式识别等领域取得了巨大成功,然而当前机器学习方法是中心化的,数据中心或者云服务器能够对数据进行访问。联邦学习作为新型的分布式机器学习范式,借助设备本身的存储和计算能力,能够在数据不出本地的情况下进行机器学习中的模型共建,从而保护数据隐私,从而有效解决数据孤岛问题。边缘计算能够在靠近设备端提供计算,存储和网络资源,为高带宽低时延的应用提供基础。在联邦学习训练中,设备数量增加,设备网络情况复杂多变等均为联邦学习中的联合训练上带来了巨大挑战,如设备选择,网络通信开销大等状况。本文首先介绍了边缘计算的基础,以及联邦学习的联合训练流程,通过对联邦学习和边缘计算的融合应用进行分析研究,进一步我们对基于边缘计算的联邦学习做了分析,最后我们对当前的主要挑战以及未来的研究方向做了总结。  相似文献   

14.
近年来,金融领域明文数据流通所引起的数据泄露问题日渐突出,传统的跨机构数据融合的机器学习方式面临着新的问题与挑战。因此,立足于金融数据安全领域,从用户隐私和数据安全角度出发,概述联邦学习理论并深入分析其目前在金融行业的应用现状,指出现有的联邦学习还存在通信效率低、数据异构性突出等问题。最后提出健全联邦学习标准体系、时刻关注监管要求等建议,为推动联邦学习在金融数据安全领域中的合法应用提供参考性意见。  相似文献   

15.
联邦学习是隐私保护领域关注的热点内容,存在难以集中本地模型参数与因梯度更新造成数据泄露的问题。提出了一种联邦集成算法,使用256 B的密钥将不同类型的初始化模型传输至各数据源并训练,使用不同的集成算法来整合本地模型参数,使数据与模型的安全性得到很大提升。仿真结果表明,对于中小数据集而言,使用Adaboost集成算法得到的模型准确率达到92.505%,标准差约为8.6×10-8,对于大数据集而言,采用stacking集成算法得到的模型的准确率达到92.495%,标准差约为8.85×10-8,与传统整合多方数据集中训练模型的方法相比,在保证准确率的同时兼顾了数据与模型的安全性。  相似文献   

16.
针对目前基于批量归一化的ResNet肺炎辅助诊断方法对于批量大小具有较高依赖性、网络通道特征利用率较低,并针对采用深度神经网络的肺炎诊断方法都忽略了医疗数据隐私和孤岛的问题,提出一种融合联邦学习框架、压缩激励网络和改进ResNet的辅助诊断方法(FL-SE-ResNet-GN),运用联邦学习保护数据隐私的同时结合压缩激...  相似文献   

17.
孙爽  李晓会  刘妍  张兴 《计算机应用研究》2021,38(12):3527-3534
随着大数据不断发展,联邦学习已被广泛应用于各种各样的场景,从而方便人们的生产生活,但该技术给人们带来便利的同时也让用户面临着数据泄露的挑战,因此数据安全成为联邦学习研究的热点问题.通过介绍横向及纵向联邦学习的训练过程,并对该过程的潜在对手及其攻击原因进行研究,从而分类总结了现有的攻击手段,如投毒攻击、对抗攻击及模型逆推攻击等;在两种场景下分类介绍针对几种攻击手段的防御措施,如梯度稀疏化、恶意检测、秘密样本对齐、标签保护、加密共享和扰动共享等,这些方法不仅可以保证参与方的数据安全,也可以保证联合模型的准确率;最后根据对现有技术的研究,总结了现存方法存在的问题及未来的研究方向.  相似文献   

18.
联邦学习与区块链在应用领域、架构特点、隐私保护机制等方面具有很强的共性、互补性和契合度,近年来,一些研究与应用将两种技术结合起来,在数据隐私保护强度、数据共享激励机制、计算性能等方面取得了不少进展.为了帮助研究者掌握联邦学习结合区块链的最新研究成果与发展方向,对基于区块链的联邦学习进行了综述.首先,介绍了联邦学习技术的相关研究和存在的不足;其次,详细讨论了当前基于区块链的联邦学习的相关研究,重点从架构特点、资源分配、安全机制、激励机制等方面进行了分析;最后,总结了基于区块链的联邦学习应用在人工智能领域的未来发展趋势和需要关注的问题.  相似文献   

19.
联邦学习为非互信实体间的合作学习提供了一种新的解决思路,通过本地训练和中央聚合的模式,在训练全局模型的同时保护各实体的本地数据隐私。然而相关研究表明,该模式下无论是用户上传的局部模型,还是中央聚合的全局模型,都会泄露用户数据的信息。安全多方计算和差分隐私作为两种主流的隐私保护技术,分别保护计算过程和计算结果的隐私。目前很少有工作结合这两种技术的优势,用于联邦学习训练全流程的防护。将安全多方计算、差分隐私相结合,设计了一种面向深度学习的隐私保护联邦学习方案,用户对本地训练得到的局部模型添加扰动,并秘密共享至多个中央服务器,服务器间通过多方计算协议对局部模型进行聚合,得到一个共享的秘密全局模型。该方案在保护用户上传的局部信息不被窃取的同时,防止敌手从聚合模型等全局共享信息展开恶意推断,并具有容忍用户掉线和兼容多种聚合函数等优点。此外,针对不存在可信中心的现实应用,上述方案可自然拓展至去中心化场景。实验表明,所提方案与相同条件下的明文联邦学习效率相近,且能取得同水平的模型准确率。  相似文献   

20.
联邦学习由于能够在多方数据源聚合的场景下协同训练全局最优模型,近年来迅速成为安全机器学习领域的研究热点。首先,归纳了联邦学习定义、算法原理和分类;接着,深入分析了其面临的主要威胁与挑战;然后,重点对通信效率、隐私安全、信任与激励机制3个方向的典型研究方案对比分析,指出其优缺点;最后,结合边缘计算、区块链、5G等新兴技术对联邦学习的应用前景及研究热点进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号