首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过DSC、SEM和XRD研究了热处理工艺对2A14铝合金环锻件微观组织和力学性能的影响。结果表明,505℃固溶1.5 h后,合金的强化相充分固溶,晶内残留相较少,晶界清晰完整;时效工艺对力学性能,尤其是伸长率的影响很大。当时效时间为6 h时,随着时效温度的增加,伸长率迅速降低。当时效温度为165℃时,随时效时间的延长,伸长率也迅速降低。2A14铝合金环锻件的较优工艺为:505℃×1.5 h固溶+165℃×6 h时效。  相似文献   

2.
固溶热处理对2D70合金挤压棒材组织与性能的影响   总被引:3,自引:0,他引:3  
通过力学性能检测、DSC热分析、金相显微镜和扫描电镜观察研究了经过双级均匀化和强热变形工艺的2D70铝合金挤压棒材固溶处理温度和时间对合金组织与电导率的影响。结果表明,合金经过固溶处理后可溶第二相已基本溶入基体中,残余的高熔点难溶相主要为近球形白色高亮度Al7Cu4Ni相和灰色块条状、棒状或球状Al9FeNi相;随着固溶温度升高,材料强度、硬度和伸长率都呈上升趋势,电导率则呈下降趋势,但性能曲线随固溶温度变化相对平缓,合金较为理想的固溶处理温度为535~545℃。随着固溶时间的延长,显微组织变化不明显,强度呈上升趋势,固溶120 min时强度和硬度都达到峰值,分别是440 MPa和140 HB,此时伸长率为12%,随固溶时间延长电导率总体变化不大。  相似文献   

3.
对挤压后的Al-9.2Zn-2.4Mg-1.5Cu合金进行固溶时效处理,其中时效处理在水热环境下完成。采用光学显微镜、扫描电镜、显微硬度计和万能材料试验机等研究了各状态下合金的微观组织和力学性能。结果表明,Al-9.2Zn-2.4Mg-1.5Cu铝合金挤压板经固溶后合金未发生再结晶,晶粒仍呈纤维状,但晶内出现大量亚晶结构,且随着固溶温度的升高,亚晶结构数量也在增加。其次,由于合金Zn含量较高,均匀化后仍残留较多低熔点T相,挤压后低熔点T相沿挤压方向呈链状分布,固溶后部分低熔点T相回溶。当合金固溶温度为475℃时,水热环境下随着时效时间的增加,合金的抗拉强度先增加随后减小,水热时效时间10 h时达到峰值,其抗拉强度为733.53 MPa,屈服强度为694.83 MPa,伸长率为13.00%。  相似文献   

4.
通过金相显微镜(OM)、扫描电镜(SEM)、示差扫描量热法(DSC)和室温拉伸性能测试等方法,研究固溶处理对新型高强耐热铝合金Al-5.8Cu-0.6Mg-0.6Ag-0.3Nd合金组织和力学性能的影响。结果表明:当固溶温度由510℃升高到525℃时,更多的初生相回溶至基体;当固溶温度继续升至530℃时,初生相则未进一步回溶,而再结晶晶粒的尺寸持续加剧,导致合金软化程度增加;合金的力学性能由时效强化和固溶软化共同影响,该合金优化的固溶处理制度为525℃、2 h,经(525℃,2 h)+(185℃,7 h)峰时效处理后,合金抗拉强度、屈服强度和伸长率分别为608 MPa、587 MPa和10.4%。  相似文献   

5.
以含Er的压铸Al-Si-Mg合金为研究对象,通过拉伸性能测试、光学显微镜(OM)、扫描电镜(SEM)、能谱(EDS)及透射电镜(TEM)分析及定量统计,分析研究了不同固溶、时效工艺对合金组织及性能的影响。结果表明:双级固溶有利于一次相回溶至基体,使合金的塑性提高;固溶温度、时间的提高能够增加固溶到基体中的溶质原子和一次相的数量。Al-Si-Mg合金峰时效时,主要的强化相为β″、β′相,β′相主要表现为长条状及“T”字形。当热处理工艺为(280 ℃×3 h+530 ℃×3 h)固溶+170 ℃×3 h时效时,合金的伸长率达8.5%,具有高塑性; 热处理工艺为(280 ℃×3 h+540 ℃×10 h)固溶+170 ℃×10 h时效时,合金的抗拉强度为344 MPa,屈服强度为312 MPa,合金具有高强度。  相似文献   

6.
研究了热处理对Al-5%Cu铸造铝合金组织和性能的影响。结果表明,当固溶温度低于535℃时,分布于合金晶界上的第二相逐渐减少,晶粒变细。随着固溶处理温度的升高,合金抗拉强度和伸长率先升高后降低,535℃时固溶强化作用最强。当固溶处理温度为535℃时,随固溶处理时间的增加,铝合金抗拉强度和伸长率先增加后减小,14 h时分别达到最大值390.3 MPa和10.6%。  相似文献   

7.
《铸造技术》2017,(12):2854-2857
研究了固溶和时效热处理对锻态7075合金显微组织、硬度和拉伸力学性能的影响,并对断口形貌进行了观察。结果表明,锻态7075合金中的第二相主要为Al7Cu2Fe、η(Mg Zn2)和S(Al2Cu Mg)相;经过固溶处理后,晶界处η(Mg Zn2)相已经回溶至基体中;固溶温度为480℃时组织中存在Al7Cu2Fe相,而η(Mg Zn2)和S(Al2Cu Mg)相消失;随固溶温度升高,合金显微硬度先上升后减小,在470℃时显微硬度最高;随固溶时间延长,显微硬度先上升后降低,在240 min时硬度最大;延长时效时间,合金抗拉强度和屈服强度都有所提高,而断后伸长率略有降低;7075合金经470℃×240 min固溶以及125℃×24 h时效后可以获得良好的强度和塑性。  相似文献   

8.
通过扫描电镜、透射电镜、微细相分析以及力学性能测试等,研究了固溶温度、时效温度、时效时间对LF2合金的微观组织和力学性能的影响。结果表明:LF2合金是以奥氏体为基体,主要的析出相有γ´、MC、Laves相,γ´相是合金中最主要的强化相。采用固溶温度990 ℃,时效温度760 ℃,时效时间10 h的热处理制度,合金可以获得最佳的性能,此时合金的抗拉强度为1201 MPa,屈服强度为772 MPa,断后伸长率为21.8%,断面收缩率为32%。  相似文献   

9.
固溶温度对6061铝合金组织和性能的影响   总被引:1,自引:0,他引:1  
采用光学显微镜(OM)、扫描电镜(SEM)和X射线衍射(XRD)等分析手段,研究固溶温度对6061铝合金热挤压板材的显微组织、力学性能及拉伸断口形貌的影响.结果表明,实验合金的强度和硬度随着固溶温度的升高而提高,当基体有轻微过烧时强度并没有降低;实验合金的最佳固溶工艺为565℃×40 min.XRD物相分析表明,在固溶处理过程中发生溶解的析出相粒子主要为Mg2Si,而残留的粗大析出相则主要是富Fe化合物.通过基体点阵常数的精确测量可以很好的表征合金的固溶程度.固溶处理后残留的析出相粒子是影响合金拉伸断口形貌的主要因素.当固溶温度低于535℃时,合金的断裂属于单一的韧窝断裂;当固溶温度高于535℃时,合金的断裂是由沿晶脆性断裂和韧窝断裂组成的混合断裂.  相似文献   

10.
采用冷等静压法和粉末冶金法制备Ti-6Al-4V-1.5Mn钛合金,并利用光学显微镜、XRD、SEM、TEM和拉伸试验机等手段对固溶时效处理后合金的组织和力学性能进行观察和分析。结果表明:试验合金经950℃×40 min固溶处理后,合金基体的组织主要为板条状的α相和细小的α'相。随着固溶温度的增加,试验合金的抗拉强度和伸长率均增加,当在950℃固溶40 min时,试验合金的具有最佳的力学性能。当试验合金经950℃×40 min固溶处理后,随后在不同的温度下进行保温6 h时效处理。随着时效温度升高,试验合金的抗拉强度和伸长率均减少,其中试验合金在460℃时效6 h时具有最佳的力学性能,并对其拉伸断口的组织分析可知,韧窝的数量最多。最后由TEM和XRD分析了最佳固溶时效工艺处理后的样品,基体组织主要为α-Ti和β-Ti,并在XRD图谱中存在较为明显的衍射峰。  相似文献   

11.
采用铸锭冶金法制备了Al-0.9Mg-0.6Si-0.7Cu合金,通过电导率测试、显微组织观察、力学性能测试、XRD物相分析以及α(Al)基体点阵常数的计算等方法研究了固溶温度(525~570℃)对该合金微观组织、力学性能和断口形貌的影响。结果表明,实验合金最佳的固溶时效工艺为555℃×45 min固溶水淬,185℃×5.5 h时效;在此条件下,合金的抗拉强度、屈服强度、伸长率和电导率分别为396 MPa、377 MPa、19.5%和38.9%IACS。XRD物相分析表明,合金主要由α-Al基体和Mg2Si等合显微组成;通过基体点阵常数的精确计算,能较好地表征合金的固溶程度。固溶处理后残留的析出相粒子和再结晶程度是影响合金拉伸断口形貌的主要因素。  相似文献   

12.
研究了固溶时间对211Z热挤压变形铝合金组织结构和性能的影响,测试了该铝合金经固溶和时效处理后的抗拉强度和断后伸长率。结果表明,当固溶温度为545℃,时效工艺固定为175℃×14h时,随固溶时间的延长,合金的抗拉强度先升高后降低,断后伸长率则呈先升高再降低又升高的变化趋势。固溶处理时间为1h时,合金抗拉强度为475MPa,断后伸长率为11.83%,此时合金获得最佳综合力学性能。  相似文献   

13.
通过电导率测试、显微组织观察、力学性能测试、XRD物相分析以及α(Al)基体点阵常数的计算等方法研究了固溶温度和时间对Al-0.69Mg-1.12Si-0.5Mn合金微观组织、力学性能和断口形貌的影响。结果表明:实验合金板材的最佳固溶工艺为550℃/30min;在此条件下,合金的抗拉强度、屈服强度、伸长率和电导率分别为375MPa、354MPa、10.5%、和41.7%IACS。合金主要由α-Al基体、Mg2Si和不可溶Mn12Si7Al5等合金相组成;通过基体点阵常数的精确计算,能较好地表征合金的固溶程度。在510~550℃范围内,适当提高固溶温度和延长固溶时间,粗大的平衡相逐渐回溶,基体过饱和程度增加,合金的强度逐渐升高;进一步提高固溶温度或延长固溶时间,合金强度逐渐降低。  相似文献   

14.
通过显微组织观察和室温拉伸实验,研究了固溶热处理制度和时效制度对含Sc的Al-Cu-Li-Zr合金拉伸力学性能与显微组织的影响。结果表明,适当提高固溶温度或延长固溶时间可以促进合金中过剩相的溶解,提高合金的强度和塑性;合金适宜的固溶-时效处理制度为530℃×1 h水淬+160℃×40 h时效,在此条件下,合金的抗拉强度、屈服强度和伸长率分别为490MPa、416 MPa和9.8%。T1相是合金的主要时效强化相。  相似文献   

15.
利用电解低钛铝锭为原料熔配A356合金,在165℃2h的时效工艺条件下,分析了固溶工艺对合金力学性能和微观组织的影响,优化了用电解低钛铝锭熔配的A356合金固溶处理工艺。研究发现,随着固溶温度从525℃升高到545℃,硅颗粒圆形度提高,尺寸增大;固溶温度对合金强度影响较小,对塑性影响较为明显。随着固溶时间的延长,硅颗粒形态越来越好,固溶1h~3h硅颗粒长大较快,固溶时间超过3h后长大速度趋稳;随着固溶时间增加,合金强度迅速增加,然后趋于平缓,而伸长率则是先升后降再趋稳。用电解低钛铝锭熔配的A356合金的最佳固溶温度为535℃,固溶时间为3h,此时合金微观组织硅相细小、形态圆整,抗拉强度Rm≥300N/mm2,伸长率A≥10%。  相似文献   

16.
以ZL114A合金为研究对象,探讨了Cu合金化对ZL114A微观组织和力学性能的影响。结果表明,在ZL114A合金中Cu加入量小于0.1%时,合金组织和性能无明显变化,此时Cu完全固溶在基体中。随着Cu加入量增加,合金抗拉强度呈先迅速升高再稍微下降趋势,伸长率则一直降低。在Cu加入量为0.5%时,ZL114A合金的抗拉强度达到最大值337.21 MPa,伸长率降低至3.4%。Cu含量高于0.1%(超过基体固溶极限)时,时效会析出W(Al2Mg5Si4Cu4)相,W相弥散分布在基体中,形成第二相强化,提高合金强度、降低塑性。析出第二相过程中铝基体会产生晶格畸变,提高合金的强度。  相似文献   

17.
采用金相显微镜(OM)、差热分析(DSC)、X射线衍射(XRD)、拉伸试验机等,研究了固溶时效处理对大应变轧制2524铝合金板材显微组织及力学性能的影响。研究表明,轧制态2524铝合金中轧制面组织呈纤维状且存在大量的Al_2Cu和Al_2CuMg相。合金在455~495℃之间,固溶处理温度越高,时间越长,粗大的第二相溶解越充分。2524铝合金经495℃×60min固溶处理后,析出相基本溶解,2524铝合金的抗拉强度,屈服强度和伸长率分别为412.6 MPa、350.7 MPa和17.9%,合金经505℃固溶处理后,出现过烧组织特征,力学性能降低。合金经时效处理后强化相均匀析出,合金性能得到强化。合金经190℃×6h时效处理后,2524铝合金的抗拉强度、屈服强度和伸长率分别为464.6MPa、395MPa和22%。  相似文献   

18.
采用OM、SEM和力学性能测试等分析研究了不同热处理工艺对选区激光熔化成形GH3536合金组织及力学性能的影响规律。结果表明,随着固溶温度越高,晶粒尺寸越大,且抗拉强度在高温条件下逐渐增加而室温条件则下降。当固溶温度达到1120 ℃时,室温条件下横向试棒与纵向试棒的抗拉强度分别达到816和731 MPa;900 ℃高温条件下则分别达到189和204 MPa。800 ℃时效处理后合金基体组织析出细小碳化物,产生第二相强化作用,强度得以提升。随着时效时间的增加,碳化物变的密集,但晶粒尺寸几乎没有发生变化,表现为室温抗拉强度与断后伸长率得到提升。当时效时间达到20 h时,室温条件下横向试棒与纵向试棒的抗拉强度分别达到832和747 MPa;900 ℃高温条件下横向试棒与纵向试棒的断后伸长率分别达到8.5%和21.5%。最后得出选区激光熔化成形GH3536合金最优的热处理工艺为:固溶(1120 ℃×1 h)+时效(800 ℃×20 h)。  相似文献   

19.
采用扫描电镜、透射电镜、能谱分析和拉伸测试等手段,研究了热处理对Y、Zr微合金化Al-Mg-Si铝合金显微组织和力学性能的影响。结果表明:添加Y、Zr有助于细化合金铸态晶粒,合金铸态组织在晶界处有明显的偏析,经535 ℃×14 h均匀化处理后偏析现象得到改善。合金经热挤压后,沿挤压方向分布着大量的第二相,随着固溶温度的增加,第二相逐渐溶解在铝基体中。时效处理后,合金中弥散分布着大量的β″相以及其他细小的析出相,起到第二相强化的作用。合金经530 ℃×2 h固溶+180 ℃×8 h时效热处理后的力学性能最佳,抗拉强度达408 MPa,伸长率为14.8%。  相似文献   

20.
通过金相显微镜、扫描电镜、X射线衍射等,分析了砂型差压铸造Mg-10Gd-3Y-Zr合金(GW103K)固溶处理后的微观组织,并进行了室温力学性能试验,对其断口形貌和断裂机理进行了探讨.结果表明,当固溶温度由500℃上升到535℃时,合金的晶粒尺寸由73μm增加到90μm,T4态合金主要由αMg固溶体+富(Gd+Y)方块相组成,经535℃×10 h处理后的合金具有最佳综合力学性能,其抗拉强度、屈服强度和伸长率分别达到231 MPa、149 MPa和4.8%;T4态合金的断裂行为主要为沿晶断裂,同时伴有少量的穿晶断裂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号