共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
钙钛矿太阳电池的光电转换效率取得了硅太阳电池的水平,然而制约其产业化发展的主要瓶颈是稳定性.为探索其衰减的物理规律,使用新两步连续沉积方法成功的制备了体相异质结钙钛矿太阳电池,其光电转换效率为6.73%.这种方法解决了传统两步法钙钛矿薄膜不均匀和相互扩散两步法反应不完全的缺点.将体相异质结钙钛矿太阳电池放在空气中10、20和80 min时对其稳定性进行测试,发现其光电转换效率会逐渐降低,它的开路电压几乎不变,它的短路电流密度和填充因子逐渐减小.通过交流阻抗测试进一步证实其衰减的主要原因是钙钛矿太阳电池的复合电阻和载流子寿命不断减小.主要原因可能钙钛矿材料在晶界处吸收空气中的水分和氧气,导致其分解. 相似文献
3.
该文研究聚对苯乙烯磺酸钠(PSS)对宽带隙钙钛矿薄膜及电池的影响。研究发现PSS添加剂可改善宽带隙钙钛矿薄膜的形貌,提升结晶度并减少缺陷态密度,这有利于抑制混合卤素宽带隙钙钛矿薄膜的相分离问题。J-V测试结果表明钝化后的宽带隙钙钛矿太阳电池性能得到明显提升。在掺有PSS的宽带隙钙钛矿太阳电池中,开路电压最高可达1.23 V,效率最高可达20.54%,并且相分离被抑制后的封装钙钛矿太阳电池稳定性显著改善,在一个太阳连续光照500 h后,电池效率仍可保持在初始效率的81.9%(氮气环境,温度40℃)。 相似文献
4.
分别在钙钛矿前驱体中添加一系列的反溶剂乙酸乙酯(EA)和乙腈(ACN),制备出不同形貌的CsPbBr3薄膜,探究薄膜质量与太阳电池性能的内在联系。结果表明,在大气制备环境中,反溶剂有助于CsPbBr3晶粒的生长,薄膜表面缺陷明显减少,太阳电池各性能参数(短路电流密度、开路电压以及填充因子)均有所提升,尤其是添加乙腈(V(PbBr2/DMF)∶V(ACN)=10∶1)后,光电转换效率(PCE)从3.16%提高到7.10%。 相似文献
5.
在空穴传输层Spiro-OMeTAD和Ag电极之间引入三氧化钼(MoO3)空穴修饰层,并研究其对空气中刮涂的钙钛矿太阳电池光伏性能的影响,结合导电性测试、稳态光致发光光谱和水接触角测试等探究其影响机制。实验和测试结果表明MoO3可提升空穴传输能力和减小界面电阻,同时对下方的Spiro-OMeTAD及钙钛矿起到保护作用,可减缓空气中水氧侵蚀。基于MoO3界面修饰层的在空气中刮涂制备的钙钛矿太阳电池光电转换效率由15.14%提升至18.30%,尤其是填充因子的平均值由60%提升至76%,电池稳定性得到改善,未封装电池在400 h后仍保持初始效率的90%。 相似文献
6.
采用偏置电压调控钙钛矿太阳电池离子迁移,抑制钙钛矿离子在界面的堆积、填充太阳电池缺陷,恢复老化太阳电池的性能。在对老化太阳电池引入正向偏置电压修复手段后,太阳电池光电转换效率从老化后的17.8%恢复到21.5%;在100 h的最大功率点跟踪中引入偏置电压修复手段后,获得3.1%总能量增益。通过自主搭建的集成表征环境,原位实时测量偏压修复太阳电池前后太阳电池电学性能和光学特性的变化规律,建立偏压调控钙钛矿离子迁移的物理模型,探究偏置电压修复太阳电池的背后机理。结果表明,该修复策略可通过调控离子迁移,钝化缺陷、优化载流子提取和输运、进而修复太阳电池。 相似文献
7.
为增强以银为背电极的正置结构有机-无机金属卤化物钙钛矿太阳电池(PSCs)的长期稳定性,研究利用射频磁控溅射技术在氧化钼层与银背电极之间沉积一层铟锡氧化物(ITO)来对PSCs进行内封装的技术。为防止ITO层溅射对下方已沉积的钙钛矿层和有机空穴传输层造成损伤,研究ITO层溅射功率和厚度对PSCs光伏性能的影响,获得优化的ITO层制备工艺,发现在ITO层溅射功率为30 W、厚度为40 nm时所制备的PSCs光伏性能最优。为进一步提升PSCs性能,对比溅射法和热蒸发法沉积银背电极对PSCs性能的影响,发现与蒸发法相比,采用溅射银背电极的PSCs光伏性能更佳,其光电转换效率可达到17.86%。PSCs光伏性能的长期稳定性测试和X射线衍射结果分析表明,溅射ITO阻隔层的插入可有效抑制钙钛矿层中的卤素离子与银背电极之间的扩散反应,在不降低PSCs效率的同时可显著改善PSCs稳定性,所制备的PSCs在干燥空气中存放4500h后仍能保持初始效率的95%。 相似文献
8.
使用乙酸钾(KAc)修饰电子传输层,正置结构的SnO2/perovskite界面使用其具有的羧基和碱金属阳离子调节能级。研究发现,KAc薄膜的引入会对钙钛矿薄膜产生一定的表面陷阱钝化作用,表现出非辐射复合的减少以及体内和界面电荷复合的抑制。此外,调节钙钛矿晶体的生长,产生晶粒尺寸从450 nm增至600 nm且无针孔的钙钛矿薄膜,缺陷密度显著降低。结果表明,通过使用KAc来修饰电子传输层,可明显减少SnO2电子传输层的缺陷及能级差;优化后的太阳电池效率提高7.63%,量子效率(IPCE)从87.3%增大到90.1%。 相似文献
9.
10.
11.
12.
研究ITO/Metal/ITO(IMI)电极中金属层Cu和Ag及其厚度对电极光电性能的影响,结合霍尔测试、紫外分光光度计、原子力显微镜等分析金属层材料和厚度对IMI电极光电性能以及形貌的影响。通过优化金属层厚度,获得方阻分别为11.2 Ω/□和14.5 Ω/□且400~800 nm波长范围内平均透过率分别为93.9%和86.5%的ITO/Ag/ITO和ITO/Cu/ITO电极。将IAI和ICI电极作为正面电极应用于钙钛矿太阳电池,太阳电池的填充因子从62.5%提升至78.0%。IMI在短波段的较大反射率会导致电池短路电流密度低1~2 mA/cm2。当Cu层和Ag层的厚度分别为7.4 nm和6.4 nm时,钙钛矿太阳电池的效率达到最佳。 相似文献
13.
14.
15.
对倒置结构,带隙为1.68 eV的钙钛矿太阳电池光吸收层掺杂1,1’-磺酰基双(2-甲基-1H-咪唑),以改善钙钛矿薄膜质量,提高太阳电池性能。空间电荷限制电流(SCLC)测试结果表明,掺杂后的钙钛矿薄膜的缺陷密度明显降低;稳态光致发光光谱(PL)结果表明,掺杂后的钙钛矿薄膜的非辐射复合被显著抑制;最终太阳电池的开路电压达到1.17 V,光电转换效率达到21.42%,在氮气环境下储存1000 h后,未封装的太阳电池仍能保持初始效率的96%,稳定性显著提高。 相似文献
16.
电子传输层是影响钙钛矿太阳电池性能的重要因素。常用的介孔二氧化钛(mp-TiO2)电子传输层存在较多表面缺陷,电荷提取效率较低,复合几率高。利用双(三氟甲烷磺酰)亚胺锂(LiTFSI)对mp-TiO2进行锂盐掺杂,并将其应用于Cs2AgBiBr6双钙钛矿太阳电池(下文简称为“Cs2AgBiBr6太阳电池”)中,以研究锂盐掺杂对Cs2AgBiBr6薄膜和Cs2AgBiBr6太阳电池性能的影响。研究结果表明:1)锂盐掺杂改善了Cs2AgBiBr6薄膜的结晶度,降低了其缺陷态密度,促进了电子传输层/钙钛矿界面处的电荷转移;2)掺杂的锂盐最优质量浓度为10 mg/mL,在该掺杂浓度下制备的Cs2AgBiBr6太阳电池的短路电流密度从1.92 mA/cm2提升到2.43m... 相似文献
17.
量子点敏化纳米TiO2太阳电池(QDSSCs)因成本低廉,近年来得到广泛关注。但是其光电转换效率仍然较低,其中主要的原因是量子点表面缺陷密度高,表面与界面电子复合严重。本文以Al2O3为纳米TiO2/CdSe QDs的界面修饰层,采用暗态下的电化学阻抗谱(EIS)以及开路电压衰减谱考察了Al2O3对抑制电子复合所起的作用,并简析了其中的作用机理。研究结果表明,TiO2表面修饰Al2O3后,其导带边上移;此外,TiO2/QDs界面缺陷态降低,界面电子复合降低,使器件的短路电流、开路电压以及填充因子提高,光电转换性能得到改善。 相似文献
18.
19.
p/i界面的缓变层对大面积(2790cm^2)a—Si:H太阳电池性能影响的研究 总被引:1,自引:0,他引:1
报道了在大面积(2790cm2)p-i-n型a-Si∶H异质结太阳电池p/i界面之间引入缓变层(CGL∶C,CGL∶B∶C)对电池性能影响的研究结果。实验发现,带有CGL∶C的a-Si∶H太阳电池性能的改善主要来源于开路电压的提高,带有CGL∶B∶C的a-Si∶H太阳电池性能的提高主要来源于填充因子FF的增加。提出了带有缓变层a-Si∶H电池的能带模型,据此分析了p/i结附近载流子的复合动力学过程,从理论上解释了实验中所发现的现象。 相似文献
20.
随着光伏行业的飞速发展,PERC太阳电池技术已无法满足太阳电池光电转换效率的进一步提升,TOPCon太阳电池因具有高光电转换效率,被认为是下一代太阳电池技术的可选方案。针对TOPCon太阳电池的多晶硅层的磷掺杂量、推进温度及推进时间对多晶硅层、硅衬底中磷掺杂特性及电性能参数的影响进行了研究。研究结果显示:在隧穿氧化层及多晶硅层厚度分别设定为1.5和130.0 nm的条件下,磷掺杂参数设置为通源流量为1400 sccm、通源时间为25 min、推进温度为880℃、推进时间为30 min时,既保证了钝化效果,也保证了欧姆接触和寄生吸收在合理的区间,TOPCon太阳电池的光电转换效率达到了最大值,为24.48%。 相似文献