首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GaInAsSb-AlGaAsSb multiple quantum-well (QW) lasers with an emission wavelength of 2.81 /spl mu/m are reported. The ridge waveguide lasers with highly strained QWs show continuous-wave laser emission up to 25/spl deg/C; in pulsed mode, the lasers operate up to 60/spl deg/C. For pulsed operation, a threshold current density of 360 A/cm/sup 2/ is found for devices with 30-/spl mu/m stripe width and 2-mm cavity length at room temperature. A low threshold current density at infinite length of 248 A/cm/sup 2/ is derived.  相似文献   

2.
We present the first room-temperature continuous-wave operation of high-performance 1.06-/spl mu/m selectively oxidized vertical-cavity surface-emitting lasers (VCSEL's). The lasers contain strain-compensated InGaAs-GaAsP quantum wells (QW's) in the active region grown by metalorganic vapor phase epitaxy. The threshold current is 190 /spl mu/A for a 2.5/spl times/2.5 /spl mu/m/sup 2/ device, and the threshold voltage is as low as 1.255 V for a 6/spl times/6 /spl mu/m/sup 2/ device. Lasing at a wavelength as long as 1.1 /spl mu/m was also achieved. We discuss the wavelength limit for lasers using the strain-compensated QW's on GaAs substrates.  相似文献   

3.
We have demonstrated high-performance InGaAsN triple-quantum-well ridge waveguide (RWG) lasers fabricated using pulsed anodic oxidation. The lowest threshold current density of 675 A/cm/sup 2/ was obtained from a P-side-down bonded InGaAsN laser, with cavity length of 1600 /spl mu/m and contact ridge width of 10 /spl mu/m. The emission wavelength is 1295.1 nm. The transparency current density from a batch of unbonded InGaAsN RWG lasers was 397 A/cm/sup 2/ (equivalent to 132 A/cm/sup 2/ per well). High characteristic temperature of 138 K was also achieved from the bonded 10/spl times/1600-/spl mu/m/sup 2/ InGaAsN laser.  相似文献   

4.
The electrical, thermal and optical properties of n-doped InP-AlGaAsSb 1.5-/spl mu/m Bragg mirrors are reported. A voltage of 10 mV per pair at 1 kA/cm/sup 2/ has been obtained in these mirrors, due to a low conduction band offset. This record electrical performance, combined with a large refractive index contrast (n/sub H//n/sub L/=1.135) and improved thermal properties, makes the combination very promising for long wavelength vertical cavity surface emitting lasers.  相似文献   

5.
Pulsed operation at a wavelength of 1.27 /spl mu/m from metamorphic ridge-waveguide (RWG) InGaAs quantum well lasers on GaAs substrates using an alloy graded buffer, grown by molecular beam epitaxy, is demonstrated. Laser performance is anisotropic along the two orthogonal <1/spl plusmn/10> directions with lower threshold currents along the <1-10> direction. Post-growth rapid thermal annealing further reduces threshold currents. For 4 /spl mu/m-wide RWG lasers, minimum threshold current densities are 1-2.5 kA/cm/sup 2/ for cavity lengths 0.6-1.5 mm.  相似文献   

6.
A semiconductor laser containing seven InAs-InGaAs stacked quantum-dot (QD) layers was grown by molecular beam epitaxy. Shallow mesa ridge-waveguide lasers with stripe width of 120 /spl mu/m were fabricated and tested. A high modal gain of 41 cm/sup -1/ was obtained at room temperature corresponding to a modal gain of /spl sim/6 cm/sup -1/ per QD layer, which is very promising to enable the realization of 1.3-/spl mu/m ultrashort cavity devices such as vertical-cavity surface-emitting lasers. Ground state laser action was achieved for a 360-/spl mu/m-cavity length with as-cleaved facets. The transparency current density per QD layer and internal quantum efficiency were 13 A/cm/sup 2/ and 67%, respectively.  相似文献   

7.
Operation of type-II interband cascade lasers in the 4.3-4.7-/spl mu/m wavelength region has been demonstrated at temperatures up to 240 K in pulsed mode. These lasers fabricated with 150-/spl mu/m-wide mesa stripes operated in continuous-wave (CW) mode up to a maximum temperature of 110 K, with an output power exceeding 30 mW/f and a threshold current density of about 41 A/cm/sup 2/ at 90 K. The maximum CW operation temperature of 110 K is largely limited by the high specific thermal resistance of the 150-/spl mu/m-wide broad area lasers. A 20-/spl mu/m-wide mesa stripe laser was able to operate in CW mode at higher temperatures up to 125 K as a result of the reduced specific thermal resistance of a smaller device.  相似文献   

8.
The InAs-InAlGaAs quantum dot (QD) lasers with the InAlGaAs-InAlAs material system were fabricated on distributed feedback (DFB) grating structures on InP [001]. The single-mode operation of InAs-InAlGaAs QD DFB lasers in continuous-wave mode was successfully achieved at the emission wavelength of 1.564 /spl mu/m at room temperature. This is the first observation on the InP-based QD lasers operating around the emission wavelength window of 1.55 /spl mu/m. The threshold current density of the InAs-InAlGaAs QD DFB laser with a cavity length of 1 mm and a ridge width of 3 /spl mu/m, in which one of the cleaved facets was coated with 95% high-reflection, was 1.23 kA/cm/sup 2/ (176 A/cm/sup 2/ for single QD layer). The sidemode suppression ratio value of the QD DFB laser was as high as 42 dB at the driving current of 100 mA.  相似文献   

9.
We have realized compressively strained GaInAsSb-GaSb type-II double quantum-well lasers with an emission wavelength of 2.8 /spl mu/m. Using broad area devices, an internal absorption of 9.8 cm/sup -1/ and an internal quantum efficiency of 0.57 is determined. For the increase of the threshold current with temperature, a T/sub 0/ of 44 K is obtained. Narrow ridge waveguide lasers show continuous-wave laser operation at temperatures up to 45 /spl deg/C, with room-temperature (RT) threshold current of 37 mA. At RT, the maximum optical output power per facet of an uncoated 800/spl times/7 /spl mu/m/sup 2/ ridge waveguide laser exceeds 8 mW.  相似文献   

10.
We demonstrate a new structure for long-wavelength (1.3-/spl mu/m) vertical-cavity top-surface-emitting lasers using proton implantation for current confinement. Wafer bonded GaAs-AlAs Bragg mirrors and dielectric mirrors are used for bottom and top mirrors, respectively. The gain medium of the lasers consists of nine strain-compensated AlGaInAs quantum wells. A record low room temperature pulsed threshold current density of 1.13 kA/cm/sup 2/ has been achieved for 15-/spl mu/m diameter devices with a threshold current of 2 mA. The side-mode-suppression-ratio is greater than 35 dB.  相似文献   

11.
Gain, group index, group velocity dispersion (GVD), temperature variation of refractive index, and linewidth enhancement factor of an In/sub 0.15/Ga/sub 0.85/N/In/sub 0.02/Ga/sub 0.98/N multiple quantum-well blue laser diode was measured using the Fourier transform method as a function of wavelength from 400 to 410 nm. At the lasing wavelength (403.5 nm), the group index is 3.4, the GVD (dn/sub g//d/spl lambda/) is -37 /spl mu/m/sup -1/, the temperature variation of refractive index dn/dT is 1.3/spl times/10/sup -4/ K/sup -1/, and the linewidth enhancement factor is 5.6.  相似文献   

12.
We report on the demonstration of continuous-wave (CW) operation of GaInAs-AlGaAsSb quantum cascade (QC) lasers. By placing a 2.5-/spl mu/m-thick gold layer on both sides of the laser ridge to extract heat from the active region in the lateral direction, together with mounting the device epilayer down, we have achieved CW operation of GaInAs-AlGaAsSb QC lasers composed of 25 stages of active/injection regions. The maximum CW operating temperature of the lasers is 94 K, and the emission wavelength is around /spl lambda//spl sim/4.65 /spl mu/m. For a device with the size of 10/spl times/2000 /spl mu/m/sup 2/, the CW optical output power per facet is 13 mW at 42 K and 4 mW at 94 K. The CW threshold current density is 1.99 kA/cm/sup 2/ at 42 K, and 2.08 kA/cm/sup 2/ at 94 K, respectively.  相似文献   

13.
Yeh  J.-Y. Tansu  N. Mawst  L.J. 《Electronics letters》2004,40(12):739-741
Low threshold InGaAsN QW lasers with lasing wavelength at 1.378 and 1.41 /spl mu/m were demonstrated by metal organic chemical vapour deposition (MOCVD). The threshold current densities are 563 and 1930 A/cm/sup 2/ for the 1.378 and 1.41 /spl mu/m emitting lasers, respectively. The significant improvement of device performance is believed due to utilisation of high temperature annealing and introduction of GaAsN barriers to suppress the resulting wavelength blue shift. A comparable characteristic temperature coefficient of the external differential quantum efficiency, T/sub 1/, is observed for the InGaAsN-GaAsN QW laser compared to similar InGaAsN/GaAs structures.  相似文献   

14.
Midinfrared InGaAsSb-AlGaAsSb strain-compensated multiple quantum-wells (SCMQW) have been grown by solid-source molecular beam epitaxy. Short-period (AlGaAsSb)/sub y/--(AlGaSb)/sub 1-y/ digital barriers were employed to avoid growth interruptions at the barrier-well interfaces, thereby significantly improving the structural and optical properties of the InGaAsSb SCMQW as evidenced by X-ray diffraction and photoluminescence measurements. Based on these high-quality SCMQW, a room-temperature threshold current density as low as 163 A/cm/sup 2/ was achieved for 1000-/spl mu/m-long broad-area lasers emitting at 2.38 /spl mu/m in pulsed mode. The 880-/spl mu/m-long lasers retained a high characteristic temperature (T/sub 0/) of 165 K up to 80/spl deg/C and could operate at temperatures above 100/spl deg/C. A typical wavelength blueshift of 38 meV was observed in the SCMQW laser samples compared to the SCMQW-only samples.  相似文献   

15.
We examine the surface recombination rate in quantum-dot semiconductor lasers and determine the diffusion length (1.0 /spl mu/m) and, for the first time, provide a value for surface recombination velocity (5/spl times/10/sup 4/ cm/s) in quantum-dot material. As a result of strong carrier confinement in the dots, these values are much lower than in comparable quantum-well lasers (5/spl times/10/sup 5/ cm/s and 5 /spl mu/m, respectively) allowing the creation of narrow (2-3 /spl mu/m wide) lasers with comparable threshold currents to those of broad area devices.  相似文献   

16.
1.3-/spl mu/m InGaAsP-InP lasers have been successfully fabricated on Si substrates by wafer bonding with heat treatment at 400/spl deg/C. A pressure of 4 kg/cm/sup 2/ has been applied on the wafers before the heat treatment and this pressure application has enabled us to achieve bonding strength required for the device fabrication even when the bonding temperature is as low as 400/spl deg/C. Room-temperature continuous-wave operation with threshold current of 49 mA has been achieved for 7-/spl mu/m-wide mesa lasers.  相似文献   

17.
Low-threshold operation was demonstrated for a 1.34-/spl mu/m vertical-cavity surface-emitting laser (VCSEL) with GaInNAs quantum wells (QWs) grown by metal-organic vapor-phase epitaxy. Optimizing the growth conditions and QW structure of the GaInNAs active layers resulted in edge-emitting lasers that oscillated with low threshold current densities of 0.87 kA/cm/sup 2/ at 1.34 /spl mu/m and 1.1 kA/cm/sup 2/ at 1.38 /spl mu/m, respectively. The VCSEL had a low threshold current of 2.8 mA and a lasing wavelength of 1.342 /spl mu/m at room temperature and operated up to 60/spl deg/C.  相似文献   

18.
Buried heterostructure quantum cascade lasers emitting at 5.64 /spl mu/m are presented. Continuous-wave (CW) operation has been achieved at -30/spl deg/C for junction down mounted devices with both facets coated. A 750 /spl mu/m-long laser exhibited 3 mW of CW power with a threshold current density of 5.4 kA/cm/sup 2/.  相似文献   

19.
We report on room-temperature continuous-wave (CW) operation of /spl lambda//spl sim/8.2 /spl mu/m quantum cascade lasers grown by metal-organic chemical vapor deposition without lateral regrowth. The lasers have been processed as double-channel ridge waveguides with thick electroplated gold. CW output power of 5.3 mW is measured at 300 K with a threshold current density of 2.63 kA/cm/sup 2/. The measured gain at room temperature is close to the theoretical design, which enables the lasers to overcome the relatively high waveguide loss.  相似文献   

20.
Strain-compensated InGaAsSb-AlGaAsSb quantum-well (QW) lasers emitting near 2.5 /spl mu/m have been grown by solid-source molecular beam epitaxy. The relatively high arsenic composition causing a tensile strain in the Al/sub 0.25/GaAs/sub 0.08/Sb barriers lowers the valence band edge and the hole energy level, leading to an increased hole confinement and improved laser performance. A 60% external differential efficiency in pulsed mode was achieved for 1000-/spl mu/m-long lasers emitting at 2.43 /spl mu/m. A characteristic temperature T/sub 0/ as high as 163 K and a lasing-wavelength temperature dependence of 1.02 nm//spl deg/C were obtained at room temperature. For 2000 /spl times/ 200 /spl mu/m/sup 2/ broad-area three-QW lasers without lateral current confinement, a low pulsed threshold of 275 A/cm/sup 2/ was measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号