首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
传统协同分集通过使网络中各单天线用户共享彼此天线,形成虚拟多天线阵列来实现空间分集,使得体积和功耗受限的网络终端也能获得分集增益,然而这并没有将信道编码和空时编码结合起来以使系统得到编码增益。为了能够获得编码增益来进一步改善系统性能,本文提出了一种基于信道编码和分布式空时分组码级联方式下的两用户协同分集方案,并且在准静态的瑞利衰落信道下对系统误码性能进行了理论推导和系统仿真,给出了误比特率的上限解析表达式。在协同用户间信道存在噪声的情况下,我们分别对CRC-DSTBC和CC-DSTBC级联下的发射方案进行了性能分析和系统仿真。仿真结果表明:即使协同用户间的信道存在噪声,本文所提出的协同分集方案与传统协同分集相比,不但获得了分集增益,同时也得到了编码增益,系统误比特率大大降低,从而显著提高了系统性能,并且这也和理论分析相吻合。  相似文献   

2.
赵贤敬  郑宝玉 《电子学报》2007,35(7):1264-1270
协同分集(cooperative diversity)技术通过为网络中某些单天线用户寻找若干个用户作为"伙伴",并共享彼此天线,形成虚拟的多天线阵列,来实现多天线分集,结合分布式空时分组编码(Distributed Space Time Block Code,DSTBC),可以有效地提高系统性能.多载波码分多址(Multi-Carrier Code Division Multiple Access,MC-CDMA)技术将数据调制到各个子载波上发送,可以有效地抵抗信道频率选择性衰落的影响.本文提出了无线网络中频率选择性衰落信道环境下的一种基于分布式空时分组码和MC-CDMA的协同发射分集方案,建立了协同用户间的误码表示模型,基于该模型推导了协同分集方案误码性能的理论表达式,并分析了协同用户间的平均解码差错概率对系统方案误码性能的影响,同时给出了仿真结果.结果表明,DSTBC-MC-CDMA相对于未协同的MC-CDMA系统获得了明显的性能增益,同时仿真也较好地验证了理论结果.  相似文献   

3.
在无线中继网络中,中继节点间的随机传输延迟将导致显著的性能下降。因此,针对慢衰落瑞利信道提出可容忍随机时延的分布式线性卷积空时码(DLC-STC),但该类空时码在快衰落信道下的分集性能尚未明确。该文从理论上证明了DLC-STC在快衰落瑞利信道下的分集增益。分析表明,DLC-STC虽然最初是在慢衰落信道下被提出的,但它在快衰落瑞利信道下通过利用最大似然(ML)接收机,仍可获得满异步协作分集增益,仿真结果验证了该理论分析,仿真结果同时表明:在快衰落瑞利信道下,DLC-STC采用MMSE-DFE接收机能够获得与ML接收机相同的分集增益。  相似文献   

4.
协同分集(cooperative diversity)技术通过使网络中各单天线用户共享彼此天线,形成虚拟的多天线阵列来实现发射或接收分集,可以有效地提高系统性能。该文提出无线网络中频率选择性衰落信道环境下的一种基于分布式空时分组码(Distributed Space Time Block Code, DSTBC)和MC-CDMA的协同发射分集方案,并给出了系统实现。建立了误码模型,探讨了协同用户间的信道状态信息(CSI)对系统误码性能的影响,分析了误码性能的上限,并给出了仿真结果。结果表明,DSTBC-MC-CDMA系统相对于未协同的MC-CDMA系统,获得了明显的性能增益。  相似文献   

5.
赵贤敬  郑宝玉 《信号处理》2008,24(2):183-188
本文提出了一种采用分布式差分空时分组编码和检测的协同分集方案,在不需要信道状态信息(CSI)的情况下可以实现满分集和全速率发射,并推导了相关瑞利信道下该方案误码率(BER)性能上限的解析表达式。传统的差分空时分组编码对整个码块进行差分,而协同分集下的任何一个协同用户进行差分编码时都不知道整个码块的信息。本文所提出的差分BPSK调制方案,通过将两协同用户的信息分别被调制到相互正交的实轴和虚轴上,从而将码块的联合差分转化为各用户独立差分。分析了在协同用户间不同的信道状态信息(CSI)和协同用户到接收用户不同的CSI情况下本文所提出发射方案的性能。仿真结果表明本文所提出的方案获得了明显的分集增益,同时也较好的吻合了理论分析的结果。  相似文献   

6.
成文婧  王海红  王欣  魏急波 《信号处理》2010,26(12):1795-1804
在协同中继系统中,应用分布式空时码(Distributed Space Time Coding, DSTC),可以在有效提高系统效率的同时获得全协同分集。但是,各中继节点的异步传输和节点间的多径衰落会破坏空时码字的结构,使之不能获得全分集。本文针对两中继的异步协同系统,提出了一种频率选择性信道下的基于线性预处理的DSTC传输结构。在此传输结构中,源节点对发送数据块进行预处理后发送给中继节点,中继节点对接收信号进行简单的共轭重排等处理,使得在目的节点形成DSTC的结构。其中,为抵抗异步传输和多径衰落引入的符号间干扰(Inter-symbol Interference, ISI),在源节点处和中继节点处均加入循环前缀(Cyclic Prefix, CP)。于是目的节点对接收到的信号进行DFT处理后,可以运用ML算法对数据信息进行检测。理论分析和仿真表明,当存在定时误差和节点间为频率选择性信道时,目的节点运用ML检测算法该传输结构可获得全空间分集和全多径分集。然后,本文考虑了信道各径延迟为整数倍符号周期的情况,并且证明了该传输结构的分集增益只与节点间信道的有效信道长度有关。   相似文献   

7.
该文提出一种把循环延迟分集应用在分组线性预编码的新方案。该方案首先应用循环延迟分集来虚拟一个多径时延扩展的信道,在此基础上应用分组线性预编码以获得频率分集增益。该方案的译码复杂度相对较低,可以针对不同的信道模型有相应的编码方案,至少能获得与空时编码同样的分集增益M(M为发射天线数),且信道估计相对简单,不降低传输码率。该方案结合空时分组码可构造出新的空时频编码方案。仿真结果表明,该方案具有良好的译码性能。  相似文献   

8.
利用高速车载终端与基站宽带通信时信道的多径时变特性,提出一种分布式空时频编码方法.该方法通过选择车内空闲终端构成虚拟天线阵列进行协同编码,在不降低传输速率的前提下,能够获得信道中潜在的协同分集、时间分集和频率分集增益.理论分析表明:车载速度的提高使时间分集增益得以增强,正确解码中继个数的增加使协同分集增益得以增加.仿真...  相似文献   

9.
协同的基本思想是通过无线网络中多个节点的互相协作来获得协同分集,从而提高系统的可靠性。将分布式空时块码(DSTBC)应用到协同中继系统中,可有效提高系统效率并获得协同分集。但是各中继节点的异步传输会破坏DSTBC码字的结构,严重影响系统性能。现有文献应用OFDM技术,可以保证基于DSTBC的协同系统在中继节点异步传输时仍获得全空间分集。但是,现有传输结构是在节点间为平衰落信道的前提下设计的,且不能直接扩展到多径衰落的情况。另外,其对应的码字需要满足一定的约束条件,限制了DSTBC在该结构下的应用。本文提出了一种新的基于OFDM的DSTBC传输结构,在节点间为多径信道和存在定时误差时,可以获得全空间分集。而且,所有可应用于同步协同系统下的码字都可以应用于此传输结构中,不需要满足额外的条件。理论分析和仿真结果表明,本文的传输结构在节点间为多径信道时可获得与现有基于OFDM的DSTBC异步协同系统在平衰落信道下一致的性能。然后,针对两中继的系统,在此传输结构的基础上,在源节点进行子载波分组和线性预编码处理,可以在获得全空间分集的同时获得全多径分集。   相似文献   

10.
将酉空时分组编码技术应用于时频调制系统中,该文提出了一种可变发射分集增益的空时/时频调制编码新方案。将已调的时频信号分解为互正交的两子信号,同时运用不同的排列组合方案即可得到不同的分集增益。计算机仿真结果表明,新方案抗平坦衰落的性能优于Alamouti空时分组编码方案及空时/频移键控编码方案,且当新方案获得二重分集增益时,其相应编码速率优于获得四重分集增益时的编码速率,但抗衰落性能劣于获得四重分集增益时的性能,所得结论与理论分析完全一致。  相似文献   

11.
In this article, we propose a time-spreaded quasi-orthogonal space-frequency coded OFDM system with constellation rotation. A constellation rotated quasi-orthogonal OFDM system could offer full rate and full diversity in a frequency selective fading channel. Time spreading can give additional time diversity gain in a fast fading channel. Assuming that complex channel gains between adjacent subcarriers are approximately equal, we develop a coding scheme for 4 × 1 MISO transceiver and its BER performance is evaluated for different Doppler frequencies in an OFDM system. The simulation results show that 2 dB gain can be achieved at BER of 10−3 using the proposed scheme compared to a scheme without time spreading and constellation rotation when 512 subcarriers are used at maximum Doppler frequency of 300 Hz. Also, the proposed system is analyzed for different delay spread of the channel and the results show that if adjacent subcarriers are correlated, it is better in SF-OFDM decoding.  相似文献   

12.
极化码作为 3GPP 标准制定中的一种信道编码技术方案,具有良好的纠错性能。为了进一步提高删余极化码的误码率性能,将极化码中基于位反转置换的缩短算法应用到系统极化码,提出一种系统极化码的缩短方法。仿真结果表明,在AWGN信道中,在高码率条件下,建议的系统极化码的缩短方法的误码率性能优于系统极化码的准均匀凿孔方法,也优于极化码的缩短方法。当码率为3/4、误码率为10-4时,系统极化码的缩短方法比极化码的缩短方法约有0.5 dB的增益,比系统极化码的准均匀凿孔方法约有0.25 dB的增益。  相似文献   

13.
We consider cooperative networks of one source, four relays, and one destination. Each of them has a single antenna. The four relays use a proposed full rate distributed quasi orthogonal space time block code (DQOSTBC) scheme. If the channel state between the source and a relay is above a threshold, we select the elements of the DQOSTBC matrix to be the decode-and-forward (DAF) type; if it is below the threshold, the corresponding elements are the amplify-and-forward (AAF) type. Thus the proposed scheme is a DQOSTBC matrix with embedded adaptive DAF/AAF elements. The bit error rate (BER) simulation results show that the proposed DQOSTBC is approximately 7 dB better than the traditional DQOSTBC (all matrix elements are fixed as DAF type) at a BER of $10^{-3}$ because traditional DQOSTBC loses full diversity due to errors in the information received. The proposed DQOSTBC is about 3 dB better than the rate 1/2 DOSTBC also proposed with adaptive DAF/AAF matrix elements at a BER of $10^{-3}$ at the same spectral efficiency of 2 bits/s/Hz.  相似文献   

14.
为提高系统性能,有效抵抗衰落,提出了采用空时分组码的双中继编码协作通信系统,并给出了中继点使用Alamouti码的发送方式。根据源点和中继点产生LDPC码的整体校验矩阵,导出了目的点进行联合迭代译码所需的初始化消息。理论分析和数值模拟表明,在相同条件下,采用Alamouti码可以明显提高系统性能。当误比特率达到10-4,Alamouti码编码协作通信系统较相应的普通编码协作具有1.6 dB增益。  相似文献   

15.
研究了一种联合低密度校验(LDPC,Low-Density Parity-Check)码和酉空时调制(USTM,Unitary Space-Time Modulation)技术在不相关瑞利平坦衰落(Rayleigh flat fading)下的多输入多输出信道(MIMO,Multiple-Input Multiple-Output)系统的性能.在无信道状态信息下,采用可并行操作的和积译码算法(SPA,Sum-Product Algorithm)的LDPCC-USTM级联系统具有优异的性能,并分析了不同LDPC码集下对系统性能的影响.仿真结果表明LDPCC-USTM级联系统比与未级联的相比有近23dB的编码增益,与基于Turbo码的USTM[6]系统相比有5dB多的编码增益,且基于非规则的LDPC码的级联系统比基于规则码有近1dB的编码增益.  相似文献   

16.
利用微带电路作成的行波管外平衡器的理论研究和实验工作已经完成。为了进一步改进行波管的性能,本文对平衡器的设计计算方法进行了讨论,改进设计了一个单级平衡器,使在2.87.0GHz的频带内增益起落从11.6dB降为2.74dB。同时提出不对称增益特性的双级复式补偿平衡器的概念和方法,设计和研制了一个双级平衡器。利用计算机对微波电路参量进行了优选调整后,在2.57.5GHz的频带内,增益起落从13.6dB降为2.73dB。实验结果的变动量为5dB。  相似文献   

17.
极化码作为一种纠错码,具有较好的编译码性能,已成为5G短码控制信道的标准编码方案。但在码长较短时,其性能不够优异。提出一种基于增强奇偶校验码级联极化码的新型编译码方法,在原有的奇偶校验位后设立增强校验位,对校验方程中信道可靠度较低的信息位进行双重校验,辅助奇偶校验码在译码过程中对路径进行修剪,以此提高路径选择的可靠性。仿真结果表明,在相同信道、相同码率码长下,本文提出的新型编译码方法比循环冗余校验(cyclic redundancy check,CRC)码级联极化码、奇偶校验(parity check,PC)码级联极化码误码性能更优异。在高斯信道下,当码长为128、码率为1/2、误码率为10-3时,本文提出的基于增强PC码级联的极化码比PC码级联的极化码获得了约0.3dB增益,与CRC辅助的极化码相比获得了约0.4 dB增益。  相似文献   

18.
A novel Automatic repeat ReQuest (ARQ) protocol called cooperative ARQ is presented in this letter, where a relay terminal is requested to retransmit an erroneously received packet, instead of the source terminal. The data link layer Packet Error Rate (PER) performance of cooperative ARQ is derived in correlated wireless channel. The results show that even though the relay-destination channel is worse than the sourcedestination channel, the new protocol outperforms the traditional one as long as the average SNR of the relaydestination channel is better than a certain threshold. It is also demonstrated that a second order diversity gain can be achieved with the cooperative ARQ protocol.  相似文献   

19.
The performance of two-pair dual-duplex systems is substantially improved if the transmission on one pair is coordinated with that on the other, so that the transmitted signals are two-dimensional vector pulses. The advantages of coordination of transmission in an optimal way are quantified. Signal processing gains of 1.8 dB can be achieved in this way by averaging the SNRs on the two pairs constituting the high rate digital subscriber line (HDSL) and by canceling the near-end crosstalk (NEXT) between them. Exploitation of pair-to-pair correlation of NEXT voltages on the constituent pairs provides an additional source of processing gain. Under reasonable assumptions concerning the distribution of NEXT coupling coefficients between cable pairs, there is a better than 50% chance that the signal processing gain achieved by exploiting pair-to-pair NEXT correlation will be greater than 1.5 dB. Coordinated transmission requires the adaptation of four flat gain amplifiers in transmitters to achieve its optimum system configuration  相似文献   

20.
In this paper, we introduce the generalized decorrelating discrete-time RAKE receiver (GD-DTR) for single antenna systems and extend it to multi-antenna (e.g. MIMO) systems. The GD-DTR benefits from the correlated nature of multiple access interference while being robust against channel estimation errors. It is a combination of two other advanced RAKE reception methods namely, the discrete-time version of the generalized RAKE (G-RAKE) receiver and the decorrelating discrete-time RAKE receiver (D-DTR). The G-RAKE was proposed for correlated interference mitigation. The D-DTR improves performance in the presence of channel estimation errors in diffuse channels. Our results show that the performance of the discrete-time G-RAKE (G-DTR) could be worse than a conventional discrete-time RAKE receiver (C-DTR) when there are channel estimation errors in the system. Unlike G-DTR, our proposed GD-DTR provides gains up to 0.7 dB at a raw bit error rate of 10-2 in the presence of channel estimation errors compared to C-DTR. For the MIMO case, the gain of the MIMO GD-DTR compared to MIMO C-DTR are 1 dB and 1.1 dB at a raw bit error rate of 10-2 in 2 transmit 2 receive antenna (2times2) and 3times3 systems respectively, if there is no correlation between the antennas. For a highly correlated receive antenna case, the gain increases to 4 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号