首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The main objective of this study was to examine the phenolic compounds and the antibacterial, antioxidant, anti-α-glucosidase and anti-α-amylase activities of the different extracts (methanol, ethanol and hexane) of Musa cavendishii collected from the Anamur district in Turkey. LC–MS/MS was used to identify phenolic compounds. Quinic acid, acotinic acid, hesperidin and amentoflavone were identified in methanol extract. These phenolic compounds, excluding hesperidin, were also identified in the ethanol extract. Methanolic extract appeared the most active in all enzyme inhibition, antibacterial and antioxidative activity assays which is mainly due to its rich phenolic content. The methanol extract of banana showed the highest anti-α-glucosidase and anti-α-amylase activities with IC50 values of 5.45 ± 0.39 mg/mL, 9.70 ± 0.29 mg/mL, respectively. This study showed that methanol and ethanol extract, especially the methanol extract, have potential for use in the development of functional foods for reducing the diabetes and bacterial risks.  相似文献   

2.
The rheological behaviors, structural properties and freeze-thaw stability of starch isolated from Tetonia barley (Normal genotype, Reg. No. CV-334, PI 646199) and Transit barley (Waxy genotype, Reg. No. CV-348, PI 660128) were investigated, along with other common starch sources for comparison. Transit barley starch showed the highest loss tangents (tan δ) during a frequency sweep test, which suggested a predominance of elastic properties over viscous properties. However, the tan δ of Tetonia barley starch was similar to that of potato starch, which indicated more solidity in comparison to Transit barley starch. Transit barley starch had the highest gelatinization temperature and the lowest gelatinization enthalpy (P < 0.05). Moreover, Tetonia and Transit barley starches displayed weak diffraction peak intensities by X-ray diffraction analysis. Additionally, Transit barley starch showed the lowest % syneresis even when freeze–thawed up to five cycles (P < 0.05). However, Tetonia barley starch had the worst freeze–thaw stability (P < 0.05), which was verified via scanning electron microscopy analysis of freeze–thawed starch gels. The results of present study indicate that barley starch can be practically applied as a functional ingredient in some specialty starchy foods.  相似文献   

3.
Subcritical water extraction is an efficient technique for extracting components from various plants by changing the polarity of water. β-caryophyllene is a natural bicyclic sesquiterpene with the highest content found among black pepper essential oils. In this study, the efficiency of extraction and yield of β-caryophyllene from black pepper were investigated using a subcritical water extraction technique. The optimal conditions of β-caryophyllene (1.19 ± 0.38 mg/g), and caryophyllene oxide (0.82 ± 0.38 mg/g) were obtained from black pepper under extraction conditions of 170 °C/10 min, and 200 °C/15 min, respectively. As the extraction temperature was increased, β-caryophyllene oxidation proceeded and the extraction content of caryophyllene oxide increased. It is anticipated that both β-caryophyllene and caryophyllene oxide with high biological activity can be used to selectively extract compounds using subcritical water extraction, which will be helpful in industrial applications.  相似文献   

4.
The structures and physicochemical properties of acid‐thinned corn, potato, and rice starches were investigated. Corn, potato, and rice starches were hydrolyzed with 0.14 N hydrochloric acid at 50 °C until reaching a target pasting peak of 200—300 Brabender Units (BU) at 10% solids in the Brabender Visco Amylograph. After acid modification the amylose content decreased slightly and all starches retained their native crystallinity pattern. Acid primarily attacked the amorphous regions within the starch granule and both amylose and amylopectin were hydrolyzed simultaneously by acid. Acid modification decreased the longer chain fraction and increased the shorter chain fraction of corn and rice starches but increased the longer chain fraction and decreased the shorter chain fraction of potato starch, as measured by high‐performance size‐exclusion chromatography. Acid‐thinned potato starches produced much firmer gels than did acid‐thinned corn and rice starches, possibly due to potato starch's relatively higher percentage of long branch chains (degree of polymerization 13—24) in amylopectin. The short‐term development of gel structure by acid‐thinned starches was dependent on amylose content, whereas the long‐term gel strength appeared dependend on the long branch chains in amylopectin.  相似文献   

5.
Branched α-dextrins with different molecular weights were prepared from waxy maize. A series of β-limit dextrins was prepared from α-dextrins and native amylopectin. The fine structure of the dextrin samples was investigated by debranching, and was found to be similar to the unit chain distribution of native amylopectin. The absolute molecular weights of α- and β-limit dextrins and commercial potato amy lose were determined by gel-permeation chromatography (GPC) and with a dual light-scattering detector. Solubilized potato amy lose and α- and β-limit dextrins were mixed at different ratios to give a total concentration of 8%. Dynamic viscoelastic measurements showed that gel formation of amylose was highly dependent both on the ratio of amylose to α-dextrin and on the molecular weight of α-dextrin. α-Dextrin caused an increase of storage modulus, G, when the amylose: α-dextrin ratio was low and the molecular weight of α-dextrin was high. The high-molecular-weight α-dextrin influenced amylose gelation in the same way as native waxy maize starch, but the medium- and low-molecular-weight α-dextrins weakened the gel formation, especially at a ratio of 25:75 (amylose: α-dextrin). When low-molecular-weight β-limit dextrins were mixed with amylose, the resulting gels were more rigid than those in which amylose was mixed with corresponding α-dextrins. When high-molecular-weight β-limit dextrins were mixed with amylose, the resulting gels were weaker.  相似文献   

6.
Isolated soy protein, wheat gluten, and starch at ratio 5:4:1 were texturized under different moisture contents (40 and 50%) and die temperature (130 and 150 °C) by the twin-screw extruder. Physicochemical properties were firstly studied. These textured vegetable proteins (TVPs) were used to form 100% plant-based burger patties. Cooking and textural features were secondly investigated. TVP at 50% moisture content and 130 °C die temperature represented the highest water absorption capacity and integrity index but the lowest solubility among TVPs. Cooking loss and shrinkage in diameter and thickness, cohesiveness, chewiness, hardness, and cutting strength of TVP meatless burger patties were significantly lower than that commercial meat patty, while moisture retention and springiness of TVP meatless burger patties were higher (p < 0.05). Our results found that the texture of patty made with TVP at 50% moisture content and 130 °C die temperature was the most similarity to commercial meat patty.  相似文献   

7.
In this study, the physiochemical and antioxidant properties of the soybean hulls from the genetically modified glyphosate-tolerant soybeans (line 40-3-2) and local cultivar northeast soybeans were investigated. The levels of fat, total phenolic, total extractable pectin and soluble dietary fiber in northeast soybeans hulls were less than that in glyphosate-tolerant soybeans hulls, respectively. The antioxidant capacity of total phenolic, water soluble pectin, and soluble dietary fiber showed that DPPH free radical scavenging activities of glyphosate-tolerant soybeans hulls were 118.23, 57.34 and 197.22 μg AAE/g, which were 2.3, 1.2 and 9.4 times of northeast soybeans hulls, respectively (p < 0.05), and FRAP of glyphosate-tolerant soybeans hulls were 401.67, 747.51 and 328.53 μg AAE/g, which were 1.8, 8.7 and 4.8 times of northeast soybeans hulls (p < 0.05). Glyphosate-tolerant soybeans hulls extract showed the stronger antioxidant activity, which was positively correlated with total phenolic content (r = 0.890, p = 0.001). It provides evidence on developing value-added utilization of hulls, soybean processing by-products, as nutraceuticals or functional food ingredients.  相似文献   

8.
Rice starch was modified using Thermus aquaticus 4-α-glucanotransferase (TAαGTase) in this study. The changes in the molecular structure and the effect on the starch retrogradation by TAαGTase treatment were investigated on isolated rice starch. By treating TAαGTase, molecular weight profile of amylopectins shifted to higher elution time from 1.0 × 108 to 2.4 × 107 or 0.8 × 107, depending on the level of enzyme dosage. Meanwhile, there were huge increases in the proportions of content corresponding to amylose size and even smaller molecules. On treating with TAαGTase, short branch chains (DP 1–8) increased, and longer branch chains (>DP 19) increased significantly as well, with a broader distribution up to DP 46 compared to the control rice starch. Amylose content decreased from 30.0 to 21.8–23.7%. This indicated that the amylose could be transferred to the amylopectin branch chain by the disproportionation of TAαGTase, resulting in lowering the amylose content and the formation of amylopectin with a broader branch-chain length distribution. TAαGTase modified rice starch showed that X-ray diffraction pattern of the B-type crystalline even before cold storage, and that a variety of cyclic glucans (DP 5–19) were produced by enzymatic reaction. In particular, the accelerated rate of starch retrogradation was clearly observed compared to the control due to an overall increase in the number of elongated long-branch chains, decrease in the amount of amylose–lipid complex, and the possible synergistic effects of these factors.  相似文献   

9.
The objective of this study was to identify whether the efficacy of extracting hesperidin and narirutin from Citrus unshiu peel by-products can be increased by combining pulsed electric field (PEF) and subcritical water extraction (SWE). The samples were treated with a PEF at a strength of 3 kV/cm for 60 and 120 s. Subsequent SWE was conducted at extraction temperatures of 110–190 °C for 3–15 min. The concentration of hesperidin was highest at 46.96 ± 3.37 mg/g peel (dry basis) after PEF treatment at 120 s, combined with SWE at 150 °C for 15 min, while that of narirutin peaked at 8.76 ± 0.83 mg/g after PEF treatment at 120 s, integrated with SWE at 190 °C for 5 min. The concentrations of both hesperidin and narirutin increased with PEF treatment time. The PEF increased the amounts of hesperidin and narirutin extracted by 22.1% and 33.6%, respectively. This study demonstrate the potential of PEF pretreatment for enhancing the SWE of flavonoids from C. unshiu peel.  相似文献   

10.
There are several studies that show that large amounts of acrylamide are detected in Jerusalem artichoke (Helianthus tuberosus L.) tea. This study examined acrylamide, inulin content and antioxidant properties of Jerusalem artichoke tea brewed in different conditions. Uniformly sliced Jerusalem artichokes were soaked in different salt and acidic solutions for 60 min at 20 °C and extracted with hot or cold water. The acrylamide content was analyzed by high-performance liquid chromatography–tandem mass spectrometry. The Inulin content and antioxidant activity were analyzed by spectrophotometer. Soaking significantly reduced acrylamide levels (p < 0.05) with the largest decrease observed for acetic acid, whereas the effects of all soaking treatments on inulin content were similar. Teas brewed using small-particle-size samples and hot water exhibited the highest acrylamide/inulin levels and antioxidant activity. Consequently, The most suitable treatment for Jerusalem Artichoke tea preparation was 1-h soaking in 1% acetic acid at 20 °C.  相似文献   

11.
The effects of vacuum package combined with 0.1% ε-polylysine and 0.2% rosemary extract (V + RP) on the quality attributes and microbial communities of large yellow croaker (Pseudosciaena crocea) during ice storage were investigated. The quality was evaluated by chemical characteristics (total volatile basic nitrogen (TVB-N), K-value and biogenic amines (BAs)), microbiological indexes (Total viable counts (TVC), Shewanella bacteria counts, Pseudomonas bacteria counts, Psychrophilic bacteria counts (PBC)), changes in microbial composition were analyzed using high-throughput sequencing. Results showed that the increase of TVB-N, K-value, microorganisms and BAs could be inhibited by V + RP. Psychrobacter and Pseudomonas were detected in all samples. Shewanella increases rapidly in the middle of storage. Vagococcus and Shewanella were related to the decomposition of ATP, the formation of BAs, and TVB-N, respectively. In conclusion, V + RP presented the optimal effects, which could extend the shelf life of large yellow croaker for another 9 days compared with the control.  相似文献   

12.
以市售新鲜怀山药为原料通过石灰水浸泡法制备山药粉,并通过正丁醇反复结晶法分离纯化直链淀粉与支链淀粉。利用碘做显色剂,使用毛细管电泳法测定山药淀粉中直链淀粉与支链淀粉的含量以及比率,本文分别对柠檬酸-磷酸盐缓冲液以及醋酸-醋酸盐缓冲液等不同缓冲液作为流动相进行了对比,实验发现醋酸-醋酸盐缓冲液对于分离测定直链淀粉与支链淀粉的效果较好。随后分析了不同p H条件下的醋酸-醋酸盐缓冲液进行的分离效果进行了比较,并测定其迁移率,当p H 4.8时分离效果最佳且其迁移率达到15.4。利用最佳条件使用纯的马铃薯直链淀粉与支链淀粉标准品,得出支链淀粉的保留时间约为1.8 min,而直链淀粉的保留时间约为2.9 min,对怀山药淀粉进行分析,从而得出怀山药中直链淀粉含量为19.49%。利用重复性试验以及回收率试验该方法的准确性与精确度能达到很好的效果。  相似文献   

13.
We characterized an α-glucosidase belonging to the glycoside hydrolase family 31 from Aspergillus sojae. The α-glucosidase gene was cloned using the whole genome sequence of A. sojae, and the recombinant enzyme was expressed in Aspergillus nidulans. The enzyme was purified using affinity chromatography. The enzyme showed an optimum pH of 5.5 and was stable between pH 6.0 and 10.0. The optimum temperature was approximately 55 °C. The enzyme was stable up to 50 °C, but lost its activity at 70 °C. The enzyme acted on a broad range of maltooligosaccharides and isomaltooligosaccharides, soluble starch, and dextran, and released glucose from these substrates. When maltose was used as substrate, the enzyme catalyzed transglucosylation to produce oligosaccharides consisting of α-1,6-glucosidic linkages as the major products. The transglucosylation pattern with maltopentaose was also analyzed, indicating that the enzyme mainly produced oligosaccharides with molecular weights higher than that of maltopentaose and containing continuous α-1,6-glucosidic linkages. These results demonstrate that the enzyme is a novel α-glucosidase that acts on both maltooligosaccharides and isomaltooligosaccharides, and efficiently produces oligosaccharides containing continuous α-1,6-glucosidic linkages.  相似文献   

14.
15.
The independent localisation of amylose and amylopectin in a range of dry and hydrated native starch granules with varying amylose content (0—70 %) has been indirectly visualised using enzyme-gold cytochemical markers. Increasing amylose content was clearly demonstrated to result in distinct changes in granule architecture. In the absence of amylose (waxy maize starch) a framework of closely packed concentric layers of amylopectin exists in the granules. Low amylose content (potato starch) results in alternating layers of densely packed amylopectin and amylose molecules. High amylose content (amylomaize starch) granules were shown to possess an amylopectin centre surrounded by an amylose periphery encapsulated by an amylopectin surface. Elongated granules without the amylopectin centre were also observed in high amylose starches suggesting a relationship between amylopectin, amylose and granule shape. A model of starch granule architecture is proposed where increased compartmentalisation of amylose and amylopectin is observed in granules containing increasing levels of amylose.  相似文献   

16.
Amylomaltase (AM) (4-α-d-glucanotransferase; E.C. 2.4.1.25) from Thermus thermophilus was used to modify starches from various botanical sources including potato, high amylose potato (HAP), maize, waxy maize, wheat and pea, as well as a chemical oxidized potato starch (Gelamyl 120). Amylopectin chain length distribution, textural properties of gels and molecular weight of 51 enzyme and 7 non-enzyme-modified starches (parent samples) were analyzed. Textural data were compared with the textural properties of gelatin gels. Modifying starch with AM caused broadening of the amylopectin chain length distribution, creating a unimodal distribution. The increase in longer chains was supposedly a combined effect of amylose to amylopectin chain transfer and transfer of cluster units within the amylopectin molecules.Exploratory principal component analysis (PCA) data analysis revealed that the data were composed of two components explaining 94.2% of the total variation. Parent starches formed a cluster separated from that of the AM-modified starches.Extended AM treatments reduced the apparent molecular weight and the gel texture without changing the amylopectin chain length distribution. However, the gel texture was typically increased as compared to the parent starch. AM-modified HAP gels were about twice as hard as gelatin gels at identical concentration, whereas gels of pea starch were comparable to gelatin gels. Modifying Gelamyl 120 and waxy maize with AM did not change the textural properties. Branching enzyme (BE) (1,4-α-d-glucan branching enzyme; EC 2.4.1.18) from Rhodothermus obamensis was used in just one modification and in combination with AM. The combined AM/BE modification of pea starch resulted in starches with shorter amylopectin chains and pastes unable to form gel network even at concentration as high as 12.0% (w/w). The PCA model of all gel texture data gave suggestive evidence for starch structural features being important for generating a gelatin-like texture.  相似文献   

17.
通过向四次回生的玉米直链淀粉中添加草酸侵蚀的四次回生的甘薯淀粉、甘薯直链和甘薯支链淀粉晶种(质量分数:1%),研究甘薯淀粉晶种对玉米直链淀粉回生的影响。结果表明,甘薯淀粉晶种明显促进了玉米直链淀粉回生长晶,其中甘薯直链淀粉晶种使得玉米直链淀粉回生率达到59.5%,比不添加晶种提高了19.3%。可见吸收光谱研究表明,甘薯淀粉晶种及长晶后的玉米直链淀粉均保持了双螺旋结构。X-射线研究表明草酸侵蚀后甘薯淀粉、甘薯直链淀粉、甘薯支链淀粉均为A+B型。将其分别添加到玉米直链淀粉中并长晶后的样品,结构均为B型。DSC研究表明,甘薯支链淀粉晶种具有最高的吸热焓,说明其晶体含量最高。三种晶种分别促进玉米直链淀粉长晶后的结构较为相似,晶体含量也较相近。该研究为提高淀粉的回生率、研究回生淀粉结晶结构提供良好的技术支持。  相似文献   

18.
Co-fermentation using yeast (Saccharomyces cerevisiae and Pichia kudriavzevii) and the bacteria (Lactobacillus plantarum) as starters isolated from spontaneous sourdough was conducted for the brewing of glucuronic acid (GlcA)-enriched apple cider. The concentration of GlcA in the apple cider co-fermented for 14 d with commercial S. cerevisiae and L. plantarum was 37.7 ± 1.7 mg/mL while a concentration of 62.8 ± 3.1 mg/mL was recorded for fermentation with P. kudriavzevii and L. plantarum, which was higher than the corresponding single yeast fermentation. The co-fermented apple cider revealed higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of 171.67 ± 0.79 µg trolox equivalents (TE)/mL using P. kudriavzevii and L. plantarum, compared to the control (143.89 ± 7.07 µg TE/mL) just using S. cerevisiae. Thus, the co-fermentation of S. cerevisiae and L. plantarum and P. kudriavzevii and L. plantarum provided a new strategy for the development of GlcA-enriched apple cider with enhanced antioxidant capacity.  相似文献   

19.
以新鲜"云薯304"切片后,采用漂烫冻干、不漂烫冻干、漂烫烘干和不漂烫烘干四种工艺条件制备干片,再经研磨粉碎制成半生的马铃薯全粉,研究不同工艺条件下全粉的营养品质和加工特性。结果表明:采用漂烫冻干工艺,马铃薯全粉的颜色与鲜马铃薯颜色最接近,制备的马铃薯全粉还原糖含量最低,为0.15%;蛋白质含量(9.01%)、总淀粉含量(69.12%)、直链淀粉含量(31.60%)与其他三种工艺处理无显著差异;从加工特性上看马铃薯全粉的持水力(5.27 g水/g全粉)和持油力(1.55 g油/g全粉)、透光率(83.43%)和各个温度下的膨胀度(50℃:9.32 g/g;60℃:11.98 g/g;70℃:13.11 g/g;80℃:15.35 g/g;90℃:12.50 g/g)均最高,都显著高于其他三种工艺(P<0.05);且凝胶流程最短,为10.96 mm。因此,可认为漂烫冻干是制备马铃薯全粉的最优工艺。  相似文献   

20.
为研究地瓜叶粉作为营养添加料在面条、馒头、蛋糕食品加工应用情况,本文采用了均匀设计、正交设计方法,以多种品质指标及其品质评价分数作为筛选目标,进行生产配方、工艺方面的研究。研究表明,地瓜叶粉适量添加到面条、馒头、蛋糕的制作中,可形成较优质的面制品;在面条配方中宜以120目地瓜叶粉添加量为4.0%;在馒头配方中宜以40目地瓜叶粉添加量为2.5%、以室温25 ℃醒发20 min为宜;而在蛋糕配方中宜用70目地瓜叶粉,添加量占主原料面糊部分的10.0%、加水量10.0%。可以看出,地瓜叶粉不仅能保持或提高相关面制品的品质、增加花色品种,而且能提高相关面制品的营养价值,能够更好地满足消费者的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号