首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is the first portion of a two-part study concerning the flow boiling of liquid nitrogen in the micro-tubes with the diameters of 0.531, 0.834, 1.042 and 1.931 mm. The contents mainly include the onset of nucleate boiling (ONB), two-phase flow instability and two-phase flow pressure drop. At ONB, mass flux drops suddenly while pressure drop increases, and apparent wall temperature hysteresis in the range of 1.0–5.0 K occurs. Modified Thom model can predict the wall superheat and heat flux at ONB. Moreover, stable long-period (50–60 s) and large-amplitude oscillations of mass flux, pressure drop and wall temperatures are observed at ONB for the 1.042 and 1.931 mm micro-tubes. Block phenomenon at ONB is also observed in the cases of high mass flux. The regions for the oscillations, block and stable flow boiling are classified. A physical model of vapor patch coalesced at the outlet is proposed to explain the ONB oscillations and block. Vapor generation caused by the flash evaporation is so large that it should be taken into account to precisely depict the variation of mass quality along the micro-tube. The adiabatic and diabatic two-phase flow pressure drop characteristics in micro-tubes are investigated and compared with four models including homogeneous model and three classical separated flow models. Contrary to the conventional channels, homogeneous model yields better prediction than three separated flow models. It can be explained by the fact that the density ratio of liquid to vapor for nitrogen is comparatively small, and the liquid and vapor phases may mix well in micro-tube at high mass flux due to small viscosity of liquid nitrogen, which leads to a more homogeneous flow. Part II of this study will focus on the heat transfer characteristics and critical heat flux (CHF) of flow boiling of liquid nitrogen in micro-tubes.  相似文献   

2.
狭缝中流动沸腾传热过冷沸腾起始点的实验研究   总被引:5,自引:0,他引:5  
以间隙为1.0mm和1.5mm的环形狭缝通道中流动沸腾传热的实验数据为基础,分析了影响过冷沸腾起始点热负荷的主要因素,给出了计算环形狭缝通道中流动沸腾传热过冷沸腾起始点的经验关联式,并将计算结果与实验值进行了比较。该关联式可以用来预测实验范围内的过冷沸腾起始点的热负荷。  相似文献   

3.
In this study, the influence of different channel geometries on heat transfer, flow regime and instability of a two-phase thermosyphon loop, is investigated. Instabilities in flow regime and heat transfer, at low and high heat fluxes, are observed. Bubbly flow with nucleate boiling heat transfer mechanism, confined bubbly/slug flow with backflow for small channel height (H) and finally slug/churn flow at high heat fluxes are observed. This study shows that flow and thermal instability increases as channel height (H) decreases and also heat transfer coefficient increases with increasing channel height and heat flux. Bubbly flow characterizes the flow regime at high heat transfer coefficients while confined bubbles, backflow and intermittent boiling are more significant for low channel heights with lower heat transfer coefficient and critical heat flux.  相似文献   

4.
5.
Subcooled flow boiling heat transfer characteristics of refrigerant R-134a in a vertical plate heat exchanger (PHE) are investigated experimentally in this study. Besides, the associated bubble characteristics are also inspected by visualizing the boiling flow in the vertical PHE. In the experiment two vertical counterflow channels are formed in the exchanger by three plates of commercial geometry with a corrugated sinusoidal shape of a chevron angle of 60°. Upflow boiling of subcooled refrigerant R-134a in one channel receives heat from the downflow of hot water in the other channel. The effects of the boiling heat flux, refrigerant mass flux, system pressure and inlet subcooling of R-134a on the subcooled boiling heat transfer are explored in detail. The results are presented in terms of the boiling curves and heat transfer coefficients. The measured data showed that the slopes of the boiling curves change significantly during the onset of nucleate boiling (ONB) especially at low mass flux and high saturation temperature. Besides, the boiling hysteresis is significant at a low refrigerant mass flux. The subcooled boiling heat transfer coefficient is affected noticeably by the mass flux of the refrigerant. However, increases in the inlet subcooling and saturation temperature only show slight improvement on the boiling heat transfer coefficient.The photos from the flow visualization reveal that at higher imposed heat flux the plate surface is covered with more bubbles and the bubble generation frequency is substantially higher, and the bubbles tend to coalesce to form big bubbles. But these big bubbles are prone to breaking up into small bubbles as they move over the corrugated plate, producing strong agitating flow motion and hence enhancing the boiling heat transfer. We also note that the bubbles nucleated from the plate are suppressed to a larger degree for higher inlet subcooling and mass flux. Finally, empirical correlations are proposed to correlate the present data for the heat transfer coefficient and the bubble departure diameter in terms of boiling, Froude, Reynolds and Jakob numbers.  相似文献   

6.
Onset of nucleate boiling (ONB) experiments using deionized water as working fluid have been conducted in a range of pressure from 1 to 4 MPa, mass flow velocity from 56 to 145 kg/m2 s and wall heat flux from 9 to 58 kW/m2 for vertical narrow annuli with annular gap sizes of 0.95, 1.5 and 2 mm. We found that the ONB sometimes occurs only on outer annulus surface, sometimes occurs only on inner annulus surface and sometimes occurs on both annulus surfaces. The heat flux of the other side has great influence on the heat flux of the ONB and the latter will decrease with the increase of the heat flux of the other side. It is also found that the heat flux of the ONB increases with the increase of the pressure, the mass flux and wall superheat. However, the heat flux of the ONB will decrease as the gap size increases in narrow annuli. The heat flux of the ONB in narrow annuli is much lower than that calculated by correlations for conventional channels and a new correlation, which has good agreement with the experimental data, has been developed for predicting the heat flux of the ONB in narrow annuli.  相似文献   

7.
Complete three-dimensional numerical simulations of single bubble dynamics during flow boiling conditions are carried out using the computational fluid dynamics code FLOW3D based on the volume-of-fluid method. The analyses include a numerically robust kinetic phase-change model and transient wall heat conduction. The simulation approach is calibrated by comparison with available experimental and theoretical data. It is found that the observed hydrodynamics (i.e., bubble shape, departure, and deformation) are simulated very well. The comparison with high-resolution transient temperature measurements during a heating foil experiment indicates that the modeling of the spatiotemporal heat sink distribution during bubble growth requires major attention. The simulation tool is employed for single bubble dynamics during flow boiling on a horizontal heating wall, and the agreement is excellent with published experimental data. The numerical results indicate how bulk flow velocity and wall heat transfer influence the bubble dynamics and heat transfer characteristics.  相似文献   

8.
Boiling instabilities, high temperatures of the onset of boiling (ONB), and early transition to dryout are some of the insufficiently resolved issues of flow boiling in microchannels. This article addresses the flow boiling challenges with the incorporation of flow restrictors to reduce the boiling instabilities and hinder vapor backflows. In addition, the temperature of the ONB was lowered and the heat transfer coefficient was increased during boiling with the fabrication of potential nucleation cavities in the microchannel walls and bottom. Experiments were conducted with degassed double-distilled water in arrays of microchannels with the hydraulic diameter ranging from 25 to 80 µm, whereas the nucleation cavities characteristic sizes varied from 2 to 12 µm. The temperatures of the ONB were up to 35 K lower in the microchannel array with properly sized nucleation cavities compared to arrays of microchannels, in which the etched nucleation cavities were less suitable. The combined effect of fabricated nucleation cavities and interconnected microchannels increased the heat transfer coefficient from three to 10 times depending on the size of the etched nucleation cavities and the transferred heat flux in the microchannel arrays.  相似文献   

9.
In order to enhance heat transfer and mitigate contamination in the boiling processes, a new type of vapor-liquid-solid (3-phase) circulating fluidized bed boiling system has been designed, combining a circulating fluidized bed with boiling heat transfer. Experimental results show an enhancement of the boiling curve. Flow visualization studies concerning flow hydrodynamics within the riser column are also conducted whose results are presented and discussed.  相似文献   

10.
In order to enhance heat transfer and mitigate contamination in the boiling processes, a new type of vapor-liquid-solid (3-phase) circulating fluidized bed boiling system has been designed, combining a circulating fluidized bed with boiling heat transfer. Experimental results show an enhancement of the boiling curve. Flow visualization studies concerning flow hydrodynamics within the riser column are also conducted whose results are presented and discussed.  相似文献   

11.
The present work is to numerically investigate the effect of heater side factors on the nucleate boiling at high heat flux, which is characterized by the existence of macrolayer. Two-region equations are proposed to study both thermo-capillary driven flow in the liquid layer and heat conduction in the solid wall. The numerical results indicate that the thermo-capillary driven flow in the macrolayer and evaporation at the vapor-liquid interface constitute a very efficient heat transfer mechanism to explain the high heat transfer coefficient of nucleate boiling heat transfer near CHF. For a very thin wall and/or wall with a poor thermal conductivity (heat side factors) are found to have significant effect on flow pattern in the liquid layer and the temperature distribution in the heated wall.  相似文献   

12.
Heat transfer characteristics of a double-pipe helical heat exchanger were numerically studied to determine the effect of fluid thermal properties on the heat transfer. Two studies were performed; the first with three different Prandtl numbers (7.0, 12.8, and 70.3) and the second with thermally dependent thermal conductivities. Thermal conductivities of the fluid were based on a linear relationship with the fluid temperature. Six different fluid dependencies were modeled. Both parallel flow and counterflow configurations were used for the second study.Results from the first study showed that the inner Nusselt number was dependent on the Prandtl number, with a greater dependency at lower Dean numbers; this was attributed to changing hydrodynamic and thermal entry lengths. Nusselt number correlations based on the Prandtl number and a modified Dean number are presented for the heat transfer in the annulus. Results from the second part of the study showed that the Nusselt number correlated better using a modified Dean number. The counterflow configuration had higher heat transfer rates than the parallel flow, but the ratio of these differences was not different when comparing thermally dependent properties and thermally independent properties.  相似文献   

13.
Experiments are conducted here to investigate how the channel size affects the subcooled flow boiling heat transfer and associated bubble characteristics of refrigerant R-134a in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm in this study. From the measured boiling curves, the temperature undershoot at ONB is found to be relatively significant for the subcooled flow boiling of R-134a in the duct. The R-134a subcooled flow boiling heat transfer coefficient increases with a reduction in the gap size, but decreases with an increase in the inlet liquid subcooling. Besides, raising the imposed heat flux can cause a substantial increase in the subcooled boiling heat transfer coefficient. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are small in the narrow duct. Visualization of the subcooled flow boiling processes reveals that the bubbles are suppressed to become smaller and less dense by raising the refrigerant mass flux and inlet subcooling. Moreover, raising the imposed heat flux significantly increases the bubble population, coalescence and departure frequency. The increase in the bubble departure frequency by reducing the duct size is due to the rising wall shear stress of the liquid flow, and at a high imposed heat flux many bubbles generated from the cavities on the heating surface tend to merge together to form big bubbles. Correlation for the present subcooled flow boiling heat transfer data of R-134a in the narrow annular duct is proposed. Additionally, the present data for some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density are also correlated.  相似文献   

14.
Flow boiling was investigated under unstable boiling conditions in three different micro-pin fin heat sinks using water and R-123 as working fluids. Once boiling was initiated severe temperature fluctuations were recorded for all the tested (three) micro-pin fin heat sinks.Flow images and fast-Fourier transform (FFT) of pressure signals during flow boiling were used to explain experimental results. The boiling instability mechanisms behind unstable boiling were discussed for both water and R-123. Accordingly, no significant pressure fluctuations with respect to time averaged pressure drop were evident for the tested micro-pin fin heat sinks before and after flow boiling instability initiates. However, a step change in the pressure signals were recorded with the inception of unstable boiling, and a sharp increase in the magnitude peaks of the FFT profiles was observed in the device operated with R-123, while there was no significant change in the FFT profiles in the devices operated with water. According to complementary flow visualization studies, the oscillation frequency of the periodic flow patterns for the device operated with R-123 was higher (f~80 Hz) than that of the devices operated with water (f~20 Hz).  相似文献   

15.
An experiment is conducted here to investigate how the channel size affects the subcooled flow boiling heat transfer and the associated bubble characteristics of refrigerant R-407C in a horizontal narrow annular duct with the gap of the duct fixed at 1.0 and 2.0 mm. The measured boiling curves indicate that the temperature overshoot at ONB is relatively significant for the subcooled flow boiling of R-407C in the duct. Besides, the subcooled flow boiling heat transfer coefficient increases with a reduction in the duct gap, but decreases with an increase in the inlet liquid subcooling. Moreover, raising the heat flux imposed on the duct can cause a significant increase in the boiling heat transfer coefficients. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are slighter. Visualization of the subcooled flow boiling processes in the duct reveals that the bubbles are suppressed to become smaller and less dense by raising the refrigerant mass flux and inlet subcooling. Raising the imposed heat flux, however, produces positive effects on the bubble population, coalescence and departure frequency. Meanwhile, the present heat transfer data for R-407C are compared with the R-134a data measured in the same duct and with some existing correlations. We also propose empirical correlations for the present data for the R-407C subcooled flow boiling heat transfer and some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density.  相似文献   

16.
A three-dimensional model of heat transfer and fluid flow in noncircular microchannel heat sinks is developed and analyzed numerically. It is found that Nusselt number has a much higher value at the inlet region, but quickly approaches the constant fully developed value. The temperature in both solid and fluid increases along the flow direction. In addition, the comparison of thermal efficiencies is conducted among triangular, rectangular and trapezoidal microchannels. The result indicates that the triangular microchannel has the highest thermal efficiency.  相似文献   

17.
Flow boiling of the perfluorinated dielectric fluid FC-77 in a silicon microchannel heat sink is investigated. The heat sink contains 60 parallel microchannels each of 100 μm width and 389 μm depth. Twenty-five evenly distributed temperature sensors in the substrate yield local heat transfer coefficients. The pressure drop across the channels is also measured. Experiments are conducted at five flow rates through the heat sink in the range of 20–80 ml/min with the inlet subcooling held at 26 K in all the tests. At each flow rate, the uniform heat input to the substrate is increased in steps so that the fluid experiences flow regimes from single-phase liquid flow to the occurrence of critical heat flux (CHF). In the upstream region of the channels, the flow develops from single-phase liquid flow at low heat fluxes to pulsating two-phase flow at high heat fluxes during flow instability that commences at a threshold heat flux in the range of 30.5–62.3 W/cm2 depending on the flow rate. In the downstream region, progressive flow patterns from bubbly flow, slug flow, elongated bubbles or annular flow, alternating wispy-annular and churn flow, and wall dryout at highest heat fluxes are observed. As a result, the heat transfer coefficients in the downstream region experience substantial variations over the entire heat flux range, based on which five distinct boiling regimes are identified. In contrast, the heat transfer coefficient midway along the channels remains relatively constant over the heat flux range tested. Due to changes in flow patterns during flow instability, the heat transfer is enhanced both in the downstream region (prior to extended wall dryout) and in the upstream region. A previous study by the authors found no effect of instabilities during flow boiling in a heat sink with larger microchannels (each 300 μm wide and 389 μm deep); it appears therefore that the effect of instabilities on heat transfer is amplified in smaller-sized channels. While CHF increases with increasing flow rate, the pressure drop across the channels has only a minimal dependence on flow rate once boiling is initiated in the microchannels, and varies almost linearly with increasing heat flux.  相似文献   

18.
In this paper we report the results of our modelling studies on two-phase forced convection in microchannels using water as the fluid medium. The study incorporates the effects of fluid flow rate, power input and channel geometry on the flow resistance and heat transfer from these microchannels. Two separate numerical models have been developed assuming homogeneous and annular flow boiling. Traditional assumptions like negligible single-phase pressure drop or fixed inlet pressure have been relaxed in the models making analysis more complex. The governing equations have been solved from the grass-root level to predict the boiling front, pressure drop and thermal resistance as functions of exit pressure and heat input. The results of both the models are compared to each other and with available experimental data. It is seen that the annular flow model typically predicts higher pressure drop compared to the homogeneous model. Finally, the model has also been extended to study the effects of non-uniform heat input along the flow direction. The results show that the non-uniform power map can have a very strong effect on the overall fluid dynamics and heat transfer.  相似文献   

19.
This paper treats transient cooling of a hot solid by an impinging circular free surface liquid jet. The flow and thermal fields in the liquid as well as the temperature distributions in the hot solid have been predicted numerically. The Navier-Stokes equations for incompressible fluid flow in an axisymmetric coordinate system and the transient heat conduction equation for a solid have been solved by a finite difference method. The hydrodynamics of the liquid film and the heat transfer processes have been investigated to understand the physics of the phenomena.  相似文献   

20.
It is a common situation that the liquefied gas tanks are always heated by the outer hot environments, which affecting the safety of the tanks. In this paper, numerical studies were conducted to reveal the heat transfer characteristics of this circumstance. The coupled heat transfer process among the thermal environment, the tank wall and the fluid in the tank was thoroughly investigated by simultaneously solving the temperature fields of both the solid region and the fluid region as well as the flow fields of both the liquid phase and the vapor phase inner the tank. The results showed that affected by the near wall flow and the wall boiling, the heat transfer presented different patterns in the stable thermal stratification stage and the de-stratification stage. In the stable stratification stage, the heat flux from the liquid phase wall to the medium distributed uniformly along the axial direction of the tank, while in the de-stratification stage, it differed a lot at the different positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号