首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为研究各因素对玄武岩纤维树脂混凝土阻尼的影响,采用正交试验方法研究了玄武岩纤维树脂混凝土阻尼特性随各因素用量的变化关系。实验表明:各因素对材料阻尼特性影响的显著程度由大到小依次为:树脂用量、玄武岩纤维用量、骨料用量及粉煤灰用量。综合考虑材料的阻尼及强度特性确定最优组分用量为:骨料用量79%、粉煤灰用量9.5%、树脂用量7%、玄武岩纤维用量0.4%,其阻尼比为5.155%,抗压强度为118.7 MPa。  相似文献   

2.
为研究玄武岩纤维掺量对陶粒混凝土性能的影响,制作了立方体试件、抗折试件和棱柱体试件,测得不同玄武岩纤维掺量下的吸水率和软化系数,7 d、14 d、28 d抗压强度和劈裂抗拉强度,28 d抗折强度、轴心抗压强度及静弹性模量。结果表明:随着玄武岩纤维掺量的增加,各组软化系数均大于0.85;各龄期下的抗压强度在玄武岩纤维掺量为0时上下波动;7 d、14 d、28 d劈裂抗拉强度和28 d抗折强度均呈现先增加后减小的趋势;立方体抗压强度、轴心抗压强度和静弹性模量变化规律基本一致。基于本试验和相关论文中的立方体抗压强度和轴心抗压强度数据进行线性拟合,建立了陶粒混凝土轴心抗压强度和立方体抗压强度间的经验公式。  相似文献   

3.
为提高玄武岩纤维钢渣粉混凝土力学性能,用磁化水取代普通水来拌制混凝土,分别进行3,7,14,21和28d力学性能试验,并对混凝土早期压拉破坏形态进行分析研究。结果表明:磁化水可有效提高玄武岩纤维钢渣粉混凝土压拉强度,尤其对早期强度提高更为明显。钢渣粉掺量为18%时,混凝土3,7和14d抗压强度较玄武岩纤维钢渣粉混凝土分别提高了约14.0%,9.0%和7.3%;3,7和14d抗拉强度分别提高了约10.3%,7.2%和4.5%。混凝土早期抗压最终破坏时,试件表面无明显损坏,整体性良好;抗拉最终破坏时,试件有微小裂缝,未完全破损。  相似文献   

4.
为优化玄武岩纤维对聚合物矿物混凝土(PMC)的组分配比,通过正交实验,制备玄武岩纤维增强PMC,分析了各因素对玄武岩纤维增强PMC抗压强度的影响。结果表明,各因素对玄武岩纤维增强PMC抗压强度的影响显著性由大到小依次为:黏合剂E44与E51质量比,玄武岩纤维加入量,骨料用量,玄武岩纤维长径比。推荐玄武岩纤维增强PMC的最佳组分为:黏合剂E44与E51质量比40∶60,玄武岩纤维加入量0.4%,骨料用量80%,玄武岩纤维长径比70,抗压强度为112.38 MPa。对最佳组分中的玄武岩纤维偶联处理后,PMC抗压强度又提高14.1%,达到128.23 MPa。  相似文献   

5.
四川省雷波地区位于康滇古陆东缘,该区峨眉山玄武岩为典型陆相喷发玄武岩,属喷溢-溢流相。根据峨眉山玄武岩的分布特征,在全区选取3条具有代表性的地层剖面为研究对象,通过剖面测量、样品测试及显微镜下观察,对雷波地区纤维用玄武岩的找矿远景进行了初步分析,认为:①雷波地区峨眉山玄武岩岩石类型主要为致密块状玄武岩、杏仁状玄武岩及斑状玄武岩,其中致密块状玄武岩是本区主要的纤维用玄武岩矿石类型;②雷波地区致密块状玄武岩主量元素特征为:w(SiO2) =49.81%,w(Al2O3) =13.15%,w(CaO)=7.71%,w( MgO)= 4.32%,w(Fe2O3+FeO) =12.66%,w(K2O+Na2O) =4.25%,w(TiO2) =3.93%;与邻区同构造位置成功拉丝的纤维用玄武岩对比,其岩石学及主量元素特征基本一致,符合拟定工业指标,能够进行连续纤维拉丝,厚度191.77~886.60 m,具有较大的找矿远景,对四川省尤其雷波地区玄武岩纤维产业发展起积极推动作用。  相似文献   

6.
连续玄武岩纤维及制品是我国战略性新兴产业重点产品。玄武岩纤维及制品为无机材料,其密度与普通混凝土接近,与混凝土基体有很好的兼容性;在替代钢纤维和钢筋,用于海洋环境特性混凝土方面,具有潜力。短切玄武岩纤维可有效提升混凝土早期抗裂性能;但在搅拌过程中,易发生成团簇分布或严重断裂现象,严重影响其使用效果。基于调整加料顺序和控制搅拌时间,开展试验研究,对比实际搅拌效果,提出了适宜的搅拌工艺,达到了减少纤维断裂、提高纤维在混凝土中均匀分布性的目的。  相似文献   

7.
研究了玄武岩纤维(BF)偶联处理时间对玄武岩纤维树脂混凝土(BFPC)材料的强度影响。分别对0 min、10 min、20 min、30 min、40 min偶联处理BF制备的BFPC材料进行单轴抗压和劈裂抗拉实验研究;通过扫描电镜(SEM)对不同偶联时间的BF表面及试件破坏断面中BF表面进行微观分析。结果表明:随着偶联处理时间的延长,BFPC的强度呈先升高后降低的变化趋势,确定了BF的最佳偶联时间为30 min。根据纤维增强复合材料理论,分析了BFPC的增强机理并建立了相应的数学模型,从理论方面阐述了偶联处理对BFPC强度的影响。  相似文献   

8.
研究了掺加短切玄武岩纤维对磷石膏抗折强度的影响,分析了短切玄武岩纤维增强磷石膏的机理,通过SEM手段对玄武岩纤维-磷石膏界面进行了研究。结果表明,短切玄武岩纤维增强磷石膏效果明显,随着短切玄武岩纤维掺量的增加,增强效果趋于稳定,长度为6 mm短切玄武岩纤维比12 mm纤维效果更好。6 mm短切玄武岩纤维掺量为1.6%时增强效果趋于稳定,2 h和绝干抗折强度分别达到7.5 MPa和15.2MPa,相较空白组提高115%和85%。经过盐酸刻蚀处理后的6 mm短切玄武岩纤维增强效果更好,在最佳掺量1.4%时,原料遇水后2 h和绝干抗折强度分别达到8.3 MPa和17.0 MPa,较空白组提高137%和107%。短切玄武岩纤维磷石膏复合材料的破坏形式主要是基体断裂和纤维拔出,玄武岩纤维与磷石膏结合机理主要是磷石膏基体和短切玄武岩纤维之间的机械锁合和化学结合。  相似文献   

9.
随着煤矿开采深度的增加,普通喷射混凝土支护结构易开裂脱落。玄武岩纤维(BF)的加入可以有效地提升喷射混凝土韧性与抑制围岩变形的能力。通过弯曲韧性试验研究了BF对玄武岩纤维喷射混凝土(BFRS)韧性的影响规律,通过核磁共振试验(NMR)研究了孔隙分布对BFRS韧性的影响,并进行了井下现场支护试验。结果表明:BF掺入后,BFRS 7 d与28 d试块抗弯强度分别提高了9.8%,6.8%,且BF对早龄期抗弯强度提升效果更为明显;分别采用DBV与JSCE标准对BFRS韧性进行评价,实验发现最优纤维掺量为4.5 kg/m~3,此时D■和D■分别为29.5 N·m和57.9 N·m,试件弯曲韧性比同时达到最大值0.875;对比可知,DBV多值韧性标准更适合评价BFRS抗弯韧性。通过NMR试验发现纤维掺量对BFRS孔隙结构影响较大,纤维掺量达到3 kg/m~3时,BFRS大孔径孔隙占比仅为0.25%,当纤维掺量超过临界掺量4.5 kg/m~3,BFRS大孔径孔隙占比增加,喷射混凝土基体内部缺陷增多,韧性降低。进行井下支护试验发现BFRS抑制变形能力优于普通喷射混凝土,其中纤维掺量为4.5 kg/m~3时,支护段巷道35 d收敛位移最小,仅为0.21 mm,此时支护效果最好。分布在BFRS基体内部的纤维可以形成稳定的三维承力结构,有效改善BFRS基体内部孔隙结构,增加BFRS韧性,提高被支护巷道抗变形能力。高韧性BFRS可以有效地满足深部大变形巷道支护要求,达到"变形不开裂,开裂不掉落"的效果。  相似文献   

10.
为研究不同温度下玄武岩纤维煤矸石混凝土(BFCGC)的力学性能和结构劣化程度,在常温至800℃间设置了5个温度段,开展高温试验,分析BFCGC在不同温度下的表观特征、质量损失、力学强度、弹性模量及微观结构。研究结果表明:混凝土的表观特征能间接反映出温度对BFCGC的劣化趋势,随着温度的升高,BFCGC在高温下的表观损伤程度逐渐明显,质量损失率单调递增;BFCGC的力学强度均先增大后减小,且在200℃时达到最大,BFCGC在800℃时的立方体抗压强度、抗拉强度和弹性模量分别为常温时的74.48%、17.97%、17.96%;混凝土的性能变化主要受温度影响,温度越高,混凝土性能劣化越严重,玄武岩纤维与活化煤矸石粗集料的加入可以在一定程度上提高混凝土的耐高温性能,但不足以改变温度对混凝土结构的劣化趋势。  相似文献   

11.
连续玄武岩纤维通常是以玄武岩矿石为唯一原料,经高温熔融和拉丝制备而成的一种无机非金属连续纤维材料。它作为一种重要的力学增强矿物功能材料和绿色结构材料,被列入我国重点扶持发展的四大高性能纤维之一。在总结玄武岩纤维的原料特征、拉丝工艺、物化性质等基础上,进一步分析了玄武岩纤维应用的广阔的市场前景,指出玄武岩纤维具有弹性模量高、耐高温、耐腐蚀、吸音系数较高、电绝缘性良好等优良性能,且性价比优势明显,可在一些领域中取代高性能高价格纤维。同时,玄武岩纤维还具有自己独特的优良物化性质,如耐湿、耐海水、耐化学腐蚀和耐高低温,在一些应用领域具有不可替代的作用。因此,应加大玄武岩纤维轻质高强材料及复合材料新产品新工艺研究和推广应用。  相似文献   

12.
张克纯 《非金属矿》2020,(5):45-47+51
为研究聚丙烯纤维和玄武岩纤维对混凝土耐久性性能的影响,通过配合比方法设计10组混凝土试块,进行抗渗、抗裂和抗压性能测试。结果表明(:1)掺入玄武岩纤维和聚丙烯纤维能够明显提高混凝土抗渗、抗裂和抗压性能。(2)在单掺纤维的情况下,玄武岩纤维和聚丙烯纤维的最佳掺量均为2%,聚丙烯纤维对混凝土性能增强的作用高于玄武岩纤维。(3)双掺纤维能够有效提高混凝土的耐久性。在等掺量的情况下,双掺纤维的混凝土性能比单掺纤维混凝土性能好。因此,宜在混凝土中掺入1%玄武岩纤维和1%聚丙烯纤维配制高性能混凝土。  相似文献   

13.
玄武岩连续纤维的特性与应用   总被引:4,自引:0,他引:4  
玄武岩纤维是一种新型高性能纤维。本文从玄武岩纤维的结构成分入手,讨论了这种复合材料的优点及特殊的性能,并简要介绍了它的应用领域。  相似文献   

14.
为了提高采空区充填体的力学性能,对加入玄武岩纤维的尾砂充填体进行抗压强度试验,研究不同纤维掺量、灰砂比和养护龄期对充填体的抗压强度影响规律,构建充填体损伤本构模型并分析其能量耗散规律。研究结果表明:玄武岩纤维的加入能够明显提高尾砂充填体的抗压强度,随着纤维掺量的增加,充填体的抗压强度呈先增大后减小的趋势,且最优掺量为0.4%,对比素尾砂充填体强度提升了13.277%~24.865%。纤维充填体峰后残余强度较高,引入损伤修正系数的损伤本构模型能合理表述纤维充填体峰后残余强度,根据损伤本构模型可得到充填体的峰值比能演算模型,适量掺加纤维可以提升充填体的峰值比能并减少能量耗散。玄武岩纤维能提高充填体的力学性能,强化矿山采空区充填效果。  相似文献   

15.
峨边地区出露的二叠纪峨眉山玄武岩组地层多以溢流相为主,岩石呈深灰色-灰绿色,根据其成因及结构组分特征,可将峨边地区峨眉山玄武岩划分为斑状玄武岩、致密玄武岩、气孔-杏仁玄武岩、凝灰质玄武岩四种岩石类型。并对玄武岩岩石、化学特征开展研究,研究表明区内存在符合拉丝的纤维用玄武岩,具有较好的开发利用前景。  相似文献   

16.
玄武岩具有较高的应用价值,为了开发出使用寿命更长的玄武岩制品,以矿区开采玄武岩作为研究对象,分析玄武岩的力学性能,确定玄武岩制品的加工技术。经多次试验后,得到下述结果:矿区开采玄武岩的力学特征与玄武岩的颗粒尺寸具有直接关系,其最佳阻裂效果长度为15 mm;当玄武岩颗粒加工尺寸为最佳尺寸时,可有效降低玄武岩断裂情况,提升玄武岩抗压、抗弯、抗折能力。研究为相关产业的玄武岩制造加工提供了数据支撑与帮助。  相似文献   

17.
为研究稻壳灰固化重金属污染土的环境特性,对稻壳灰和水泥固化镉污染土开展毒性浸出试验和pH值测试,研究养护龄期、镉含量、水泥和稻壳灰掺量对固化污染土环境特性的影响规律以及探讨参数间关系。研究结果表明:①镉浸出浓度随养护龄期增加而不断降低,稻壳灰掺入使得镉浸出浓度总体上先降低后升高,稻壳灰掺量为5%~10%时固化效果较优;镉含量为100 mg/kg时镉浸出浓度满足标准限值;②固化污染土pH值随稻壳灰掺量和养护龄期增加而先升后降,不同养护龄期下固化土pH值随镉含量增加均有所降低;③浸出液pH值随稻壳灰掺量增加而先升后降,在5%~10%稻壳灰掺量时达到峰值;浸出液pH值随养护龄期增加而降低;④镉浸出浓度随浸出液pH值增大而减小,与pH值较大时固化污染土固化效果较好的结论相一致。  相似文献   

18.
连续玄武岩纤维(Continuous Basalt Fiber,简称CBF)是由天然的玄武岩矿石在高温下拉制而成。相对于石棉、岩棉等短纤维,CBF具有较高的长径比,不易被肺部吸入,同时在生产过程中耗能低、制备过程无污染,因而被称为绿色材料。相对于玻璃纤维,CBF具有优良的耐碱性,同时具有宽范围耐温性(-196℃~700℃),高强、绝热及高介电性能等。但现阶段CBF产量并不高,原因是多方面的,包括原料成分、设备和工艺等多诸多问题。本综述论文给出了CBF原料中SiO2、Al2O3、FeO+Fe2O3等主成分影响拉丝工艺的经验规律,分析了漏板、窑炉均化、浸润剂、及熔制技术等影响因素。同时,本文就玄武岩资源与CBF产业现状、CBF复合材料研发及CBF应用领域给出了介绍,该内容不仅包括建筑、防火隔热等传统领域,还包括汽车轻量化、过滤环保及电子技术等高技术领域。最后简述了我国开发CBF所存在问题,并给出展望。   相似文献   

19.
针对深部开采复杂地下环境带来的充填体质量低、易开裂、稳定性差等问题,利用矿渣微粉、镁渣、脱硫石膏开发低成本胶凝材料,采用玻璃纤维作为改性材料调控充填体力学性能。首先,对试验材料开展物化特性研究;其次,采用正交试验法设计25组配比组合进行试验,综合极差分析和方差分析,探讨纤维掺量、纤维长度、镁渣掺量对充填料浆流动性能及力学性能的影响规律。试验结果表明:单位体积内纤维掺量和纤维长度的增加,提升了纤维与骨料颗粒间的接触面积,阻滞了颗粒的正常流动,增加了料浆黏度和屈服应力,充填料浆流动性呈不断降低趋势。随着纤维掺量、纤维长度和镁渣掺量的增加,充填体强度呈先上升后降低的趋势,当纤维掺量0.6%、纤维长度9 mm、镁渣掺量15%时,充填体的抗压强度达到最大值。极差分析和方差分析表明,各试验因素对充填体1 d、3 d和7 d抗压强度影响的主次排序为纤维掺量>纤维长度>镁渣掺量;纤维掺量是影响充填体28 d抗压强度的主要因素,镁渣掺量次之,纤维长度的影响最小。  相似文献   

20.
用于制造玄武岩纤维的玄武岩原料性质是影响其产品性能的关键因素。本文通过X射线荧光光谱仪、X射线衍射仪、岩矿鉴定分析等手段,对攀西地区某用于制造纤维的玄武岩的化学成分组成、矿物组成及嵌布特征等进行了详细研究。结果表明该玄武岩中主要矿物为斜长石、辉石、绿泥石和石英,还有少里的磁铁矿等金属矿物,其中二氧化硅和三氧化二铝总量达到64.28%, TFe品位为13.65%,玄武岩中主要矿物的嵌布关系与当前工业化生产用的玄武岩原料基本一致。由于铁质组分对玄武岩纤维制备工艺和产品性能的影响较大,还对该玄武岩进行初步的磁选除铁试验,并成功获得了高铁玄武岩和低铁玄武岩,为玄武岩纤维的制备提供了多种可能的原料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号