首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
采用极化曲线和电化学阻抗测试,研究了N80钢在50℃的3%NaCl盐水与凝析油混相溶液中,不同CO2、H2S分压比(θ=PCO2/PH2S)条件下的腐蚀规律;采用SEM、XPS等分析了N80钢表面腐蚀产物的形貌和组成。结果表明:在饱和CO2溶液中,随着H2S含量的增加,碳钢电极的腐蚀减弱;当θ<20时,随着θ增大,腐蚀电流密度逐渐减小,腐蚀主要由H2S控制,在N80钢表面生成了均匀致密的针状晶型腐蚀产物,主要是FeS和FeS1-x膜;当20<θ<500时,随着θ的增大,腐蚀电流密度先增大后减小,腐蚀由CO2和H2S共同控制,钢片表面生成了多种晶型腐蚀产物,主要是FeCO3和FeS1-x膜;当θ>500时,随着θ的增大,腐蚀电流密度增大,腐蚀反应由CO...  相似文献   

2.
运用BP人工神经网络技术建立了预测L360钢在H2S/CO2环境中腐蚀的模型,神经网络拓扑结构为5-4-1,网络模型训练成功以后,应用它预测L360钢在H2S/CO2中的腐蚀速度.结果表明,人工神经网络模型预测的结果与实验数据相当符合,误差在14%以内.由此可见,BP神经网络模型可以作为预测H2S/CO2环境致集输管线腐蚀速率的工具.  相似文献   

3.
李强  鞠虹  唐晓  李焰 《腐蚀与防护》2013,(1):10-12,17
探索对油气管线CO2/H2S腐蚀速率的预测,应用LabVIEW软件中的MATLAB Script节点,通过Lab-VIEW与MATLAB混合编程构建了虚拟仪器程序,建立了油气管线腐蚀速率预测的BP神经网络模型。数值仿真试验结果表明,建立的模型稳定性好,预测精度高,使用效果良好。  相似文献   

4.
对带状组织级别不同的管线钢在CO2及H2S/CO2饱和的NACE溶液中的腐蚀速率和腐蚀形貌进行了比较分析。结果表明,在CO2饱和的NACE溶液中,带状组织级别越低的材料,发生均匀腐蚀的特征越明显,通过生成保护性膜抵抗腐蚀的能力越强。而带状组织级别越高的材料,发生局部腐蚀,尤其是点蚀的特征越明显。在H2S/CO2饱和的NACE溶液中,带状组织级别越低的材料,越不易发生氢致开裂现象。为了提高管线钢抗CO2及H2S/CO2腐蚀的性能,应控制其带状组织。  相似文献   

5.
在模拟川渝地区天然气管线含H2S/CO2介质环境中进行腐蚀实验研究,分析了X52钢在含H2S/CO2溶液介质中暴露时间对管线钢腐蚀速率、腐蚀产物膜形貌及组成的影响。结果表明,随暴露时间延长,腐蚀产物膜层对基体产生一定保护性,减缓了腐蚀进程。腐蚀产物由马基诺矿型、硫化亚铁和陨硫铁发展成马基诺矿、硫化亚铁、陨硫铁和黄铁矿。  相似文献   

6.
利用高温高压反应釜模拟试验和电化学测试,研究了X65钢海底管道在CO2/H2S环境下的耐蚀性。结果表明,不加缓蚀剂条件下,X65钢在总压为0.25MPa时的平均腐蚀速率及局部腐蚀风险与总压为0.7MPa时相比,均显著降低。添加100mg/L的缓蚀剂,X65钢的腐蚀速率显著降低,缓蚀效果较好;电化学测试与模拟试验结果一致。降压至0.25MPa分离出部分腐蚀性气体后再输送可大大降低内腐蚀风险,结合缓蚀剂措施,该腐蚀环境下可选择X65钢海底管道输送油气。  相似文献   

7.
采用高温高压模拟腐蚀试验、动电位扫描技术和X射线光电子能谱仪(XPS)等手段研究了镍基合金G3在高含H2S和CO2腐蚀环境中的腐蚀行为。结果表明,在高温高压(90℃,32 MPa,pH2S为3.4 MPa,体积分数10.49%,pCO2为3.3MPa,体积分数为10.41%)的模拟气田采出液中,镍基合金G3发生了明显腐蚀,腐蚀产物由片状晶粒构成;在含50%H2S气田采出水中加入CO2促进了合金的腐蚀,当CO2的体积分数进一步提高到50%,合金点蚀敏感性下降;在50%H2S和50%CO2环境中,Cl-提高了合金点蚀敏感性,同时高浓度Cl-破坏了合金钝化膜自修复能力,G3在该腐蚀环境中形成的钝化膜由Cr2S3,Cr2O3,FeS,Fe2O3,Ni(OH)2和MoO3等组成。随着使用环境条件的恶化,合金钝化膜遭到破坏,腐蚀加速。  相似文献   

8.
利用高温高压反应釜模拟普光气田的工况环境,研究抗硫套管钢P110SS在高含H2S/CO2环境中的腐蚀行为和硫化物应力开裂(SSC)敏感性.结果表明,随着温度和H2S/CO2分压的升高,P110SS的腐蚀速率先降低后升高,而在相当于井中部工况的环境中,钢的腐蚀速率最低,腐蚀产物膜明显脱落.在高含H2S/CO2环境中,采用四点弯曲法加载达到P110SS屈服强度的90%时,试样表面未发现裂纹,表明SSC敏感性比较低.  相似文献   

9.
Ni-Fe-P化学镀层结构及抗CO2腐蚀性能研究   总被引:3,自引:1,他引:2  
采用SEM、XRD、能谱等现代化测试方法,对Ni-Fe-P化学镀层的组织结构、形成机理进行了研究;采用电化学测试方法,研究了Ni-Fe-P复合镀层在CO2水溶液中的腐蚀行为及抗CO2腐蚀机理.  相似文献   

10.
用静态和动态腐蚀失重法研究喹啉季铵盐、吡啶季铵盐、曼尼希碱和咪唑啉季铵盐四种不同主体类型缓蚀剂在高温高压H2S/CO2环境中N80钢的缓蚀性能,并结合扫描电子显微镜(SEM)和X射线光电子能谱(XPS)表面分析技术研究了不同缓蚀剂主体分子结构与缓蚀性能的关系。结果表明,四类缓蚀剂的缓蚀效率的大小顺序是:喹啉季铵盐>吡啶季铵盐>曼尼希碱>咪唑啉季铵盐。喹啉季铵盐与其他三种缓蚀剂主体分子结构相比具有更好的抗硫性能,其对N80钢具有良好的吸附性能,可形成抗腐蚀性介质渗透能力强的致密均匀和稳定不易分解的有机膜。其缓蚀剂用量为0.15%时,缓蚀率可达97%。  相似文献   

11.
利用等离子热喷涂技术在N80钢表面制备了镍基合金涂层,并进行高温扩散处理。通过CO2高温高压腐蚀试验评价涂层在模拟油田环境中的耐蚀性能,利用扫描电镜(SEM)、X射线衍射(XRD)方法分析了涂层的微观形貌和相组成。结果表明,镍基合金涂层由单质Ni相及固溶体Cr1.2Ni2.88、FeNi3、MoO2和CuO组成。经过600℃扩散处理后,涂层内原子结构更为致密。涂层的CO2高温高压腐蚀速率为0.0046mm/a,是原始涂层的1/100,具有优良的抗CO2高温高压腐蚀性能。  相似文献   

12.
运用腐蚀失重和电化学测量技术,研究了镍基合金718在模拟苛刻油田环境中的H2S/CO2腐蚀行为。结果表明,在模拟高温高压H2S/CO2腐蚀环境中,718合金腐蚀轻微,表现出良好的抗均匀腐蚀和局部腐蚀能力。电化学测试结果表明,在模拟CO2腐蚀环境中,718合金的阳极极化曲线存在明显的钝化区,而在模拟H2S/CO2腐蚀条件下的阳极极化曲线呈现多次活化-钝化转变现象,表明腐蚀产物膜的稳定性降低;EIS表明阻抗谱均有明显的容抗弧特征,不含H2S时材料显示单一的容抗弧,加入H2S时低频显示扩散阻抗控制,饱和CO2溶液中718合金具有相对较大的极化电阻。  相似文献   

13.
通过高温高压反应釜模拟普光气田集输环境,研究H2S和CO2分压及Cl-浓度对普光气田用集输管线钢L360QCS钢腐蚀行为的影响。采用失重法测试腐蚀速率,用四点弯曲法进行应力腐蚀试验,结合宏观形貌观察和扫描电镜(SEM)微观观察及能谱(EDS)分析,进行了综合研究。在H2S和CO2分压比固定的情况下,随着H2S压力升高,腐蚀速率先降后升。压力较低时,L360QCS应力腐蚀试样表面均出现不同程度的氢鼓泡,当压力升高时,氢鼓泡减少或者消失。腐蚀速率随着Cl-浓度的升高而增大,达到临界值后,腐蚀速率随着Cl-浓度的升高而降低;在低浓度条件下,Cl-浓度的增加会促进点蚀的发生,进而诱发裂纹的产生;而当Cl-浓度增加到临界值时,腐蚀产物的沉积可以抑制点蚀的生成,从而使材料的应力腐蚀开裂敏感性降低。  相似文献   

14.
目的研究Ni-Fe-P化学镀层抗CO2腐蚀性机理。方法通过SEM,EDS,XRD以及EIS等技术对经化学镀Ni-Fe-P处理后的35Cr Mo钢表面进行表征,分析其抗CO2的腐蚀性能。结果处理后的35Cr Mo钢表面为非晶态组织,硬度高达570.12HV。Ni-Fe-P镀层钢腐蚀倾向减小,极化电阻增大,镀层对基体形成了较好保护。镀层的腐蚀过程受溶液双电层和钝化膜的影响。结论 Ni-Fe-P镀层在CO2水溶液中具有极强的钝化倾向,可显著提高材料的抗CO2腐蚀性能。  相似文献   

15.
利用静态挂片失重法研究了含H2S/CO2模拟油田水溶液中, 温度及Cl-浓度对L360管线钢点蚀的影响, 并利用Gumbel第一类近似函数分析了最深蚀孔概率. 结果表明, 在40℃~70℃之间, Cl-浓度为10 g/L条件下, 点蚀的严重程度随温度增高而增大. 恒定温度下, Cl-浓度对点蚀发生也有明显的影响, 当Cl-在10×15 g/L范围时, 腐蚀试样发生明显的点蚀; 当Cl-浓度大于20 g/L时, 试样主要发生均匀腐蚀, 随着Cl-浓度的增大, 腐蚀产物膜变得更加疏松, 保护性能下降, 均匀腐蚀速率增大. 最深点蚀分布服从Gumbel第一类近似函数.  相似文献   

16.
利用美国Cortest公司高温高压反应釜模拟H2S/CO2及元素S共存环境,在流动高矿化度饱和H2S/CO2介质中进行试验,然后利用SEM、EDS及XPS等表面分析技术,探讨元素S对镍基合金G3高温高压H2S/CO2腐蚀行为的影响。结果表明:在元素S含量为0、1及10 g/L时,镍基合金G3的平均腐蚀速率变化不大,钝化膜厚度约为11 nm,其结构呈双极性,外层以Cr、Ni的氢氧化物、氧化物为主,内层以Cr、Ni的氧化物为主;当元素S含量增大到100 g/L时,腐蚀速率急剧增大,钝化膜厚度也迅速增大到约90 nm,且结构转变为外层以Cr、Ni的硫化物为主,内层以Cr、Ni的氧化物为主;钝化膜结构的转变可能是导致镍基合金G3耐蚀性能降低的最主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号