首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
改进无线网络TCP性能的研究   总被引:1,自引:0,他引:1  
对采用TCP协议传输数据的实现过程及其在无线网络中可能遇到的问题进行了描述。对因无线信道误码率较高和频繁切换而导致网络性能下降的问题,提出了无线链路层快速重传技术改善网络性能的有效措施,并研究了在无线网络中链路层快速重传技术对无线TCP数据传输的影响。仿真表明链路层快速重传可以有效地改善无线TCP的性能,进一步提高了网络利用率和吞吐量。  相似文献   

2.
有线网络中TCP拥塞控制机制是建立在网络丢包的基础之上的,所以该机制不能适应无线网络中高误码率造成的无线链路丢包的情况。无线链路层重传技术是改善网络性能因无线信道误码率较高而下降的一项重要措施。文中研究了WCDMA无线网络中链路层重传技术对无线TCP数据传输的影响,比较两种重传方案,通过OPNET仿真技术对其进行仿真比较,得出其中一种更有效的改善TCP传输性能的方案。  相似文献   

3.
Providing support for TCP with good quality link connection is a key issue for future wireless networks in which Internet access is going to be one of the most important data services. A number of schemes have been proposed in literature to improve the TCP performance over wireless links. In this paper, we study the performance of a particular combination of link layer protocol (e.g., radio link protocol or RLP) and MAC retransmissions to support the TCP connections over third generation (3G) wireless CDMA networks. We specifically investigate two metrics - the packet error rate and the delay provided by RLP and MAC retransmissions - both of which are important for TCP performance. For independent and identically distributed (i.i.d) error channels, we propose an analytical model for RLP performance with MAC retransmission. The segmentation of TCP/IP packets into smaller RLP frames, as well as the RLP buffering process, is modeled using a Markov chain. For correlated fading channels, we introduce an analytical metric called RLP retransmission efficiency. We show that: 1) the RLP frame size has significant impact on the overall 3G system performance, 2) MAC layer retransmissions significantly improve the TCP performance, and 3) the RLP retransmission scheme performs better in highly correlated channels, while other scheme performs better in low correlated channels. Simulation results also confirm these conclusions.  相似文献   

4.
在无线数据传输网络中,物理层帧差错率(FER)是影响网络性能的一个主要因素。无线链路层重传技术是改善网络性能因无线信道误码率较高而下降的一项重要措施。本文主要研究cdma2000无线网络中链路层重传技术对无线TCP数据传输的影响,提出一种cdma2000链路层重传方案,并通过OPNET仿真技术对该重传方案进行仿真,验证了该方案能改善TCP数据在cdma2000无线网络中的传输性能。  相似文献   

5.
A number of different authors have considered the problem of performance degradation of transmission control protocol (TCP) in wireless ad hoc networks. We herein show that pauses in packet transmission due to packet losses are the fundamental cause of performance degradation of TCP in wireless ad hoc networks. To minimize the duration of packet transmission pauses, we propose a fast retransmission scheme for improving TCP performance in consideration of the inter-operability of previously deployed TCPs in wireless ad hoc networks. We also propose an additional rate control scheme for TCPs to reduce the probability of packet contention. Using OPNET and NS2 simulations, we show that our proposed schemes can provide a much better performance than conventional TCPs.  相似文献   

6.
A new ATM adaptation layer for TCP/IP over wireless ATM networks   总被引:3,自引:0,他引:3  
Akyildiz  Ian F.  Joe  Inwhee 《Wireless Networks》2000,6(3):191-199
This paper describes the design and performance of a new ATM adaptation layer protocol (AAL‐T) for improving TCP performance over wireless ATM networks. The wireless links are characterized by higher error rates and burstier error patterns in comparison with the fiber links for which ATM was introduced in the beginning. Since the low performance of TCP over wireless ATM networks is mainly due to the fact that TCP always responds to all packet losses by congestion control, the key idea in the design is to push the error control portion of TCP to the AAL layer so that TCP is only responsible for congestion control. The AAL‐T is based on a novel and reliable ARQ mechanism to support quality‐critical TCP traffic over wireless ATM networks. The proposed AAL protocol has been validated using the OPNET tool with the simulated wireless ATM network. The simulation results show that the AAL‐T provides higher throughput for TCP over wireless ATM networks compared to the existing approach of TCP with AAL 5. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Various retransmission schemes for wireless communication systems have been used to improve performance such as reliability and throughput. Each retransmission scheme is designed to improve the performance according to characteristics of each layer of protocol stacks, such as delay components and error control. Especially, a cross-layered retransmission scheme has been proposed to maximize the spectral efficiency by combining a retransmission scheme and adaptive modulation and coding (AMC). However, the cross-layered retransmission scheme is designed for performance improvement at the wireless access networks. The end-to-end performance is not taken into account for modeling of the cross-layered retransmission schemes. It is difficult to design retransmission schemes for the end-to-end performance improvement. In this paper, we analyze the delay and the throughput at the transport layer for the end-to-end performance when a system uses a cross-layered retransmission scheme and the transmission control protocol as the reliable transmission protocols. We also propose a cross-layered retransmission strategy, AMC combined with automatic repeat request (ARQ) and hybrid ARQ (HARQ), to improve end-to-end throughput. From the evaluation results, it is shown that the proposed cross-layered retransmission strategy is suitable for delay insensitive services that require high throughput.  相似文献   

8.
In multi-hop wireless networks, transmission control protocol (TCP) suffers from performance deterioration due to poor wireless channel characteristics. Earlier studies have shown that the small TCP acknowledgments consume as much wireless resources as the long TCP data packets. Moreover, generating an acknowledgment (ACK) for each incoming data packet reduces the performance of TCP. The main factor affecting TCP performance in multi-hop wireless networks is the contention and collision between ACK and data packets that share the same path. Thus, lowering the number of ACKs using the delayed acknowledgment option defined in IETF RFC 1122 will improve TCP performance. However, large cumulative ACKs will induce packet loss due to retransmission time-out at the sender side of TCP. Motivated by this understanding, we propose a new TCP receiver with an adaptive delayed ACK strategy to improve TCP performance in multi-hop wireless networks. Extensive simulations have been done to prove and evaluate our strategy over different topologies. The simulation results demonstrate that our strategy can improve TCP performance significantly.  相似文献   

9.
适用于卫星网络的TCP跨层改进机制   总被引:5,自引:0,他引:5  
顾明  张军 《电子与信息学报》2008,30(8):1815-1819
该文提出基于跨层信息交互,将链路层ARQ重传状态信息通知TCP的机制,避免了链路层重传引起的时延变化对TCP的不利影响。该机制使用完全可靠选择性重传ARQ为TCP提供可靠的链路,避免卫星链路上发生丢包,并且不必要求链路层保证包按序递交,消除了重排序的等待时延,适合带宽时延积较大的卫星网络。仿真结果表明,能显著提高TCP在卫星网中的性能,特别是在误帧率较高条件下。  相似文献   

10.
The transmission control protocol (TCP) is one of the most important Internet protocols. It provides reliable transport services between two end‐hosts. Since TCP performance affects overall network performance, many studies have been done to model TCP performance in the steady state. However, recent researches have shown that most TCP flows are short‐lived. Therefore, it is more meaningful to model TCP performance in relation to the initial stage of short‐lived flows. In addition, the next‐generation Internet will be an unified all‐IP network that includes both wireless and wired networks integrated together. In short, modelling short‐lived TCP flows in wireless networks constitutes an important axis of research. In this paper, we propose simple wireless TCP models for short‐lived flows that extend the existing analytical model proposed in [IEEE Commun. Lett. 2002; 6 (2):85–88]. In terms of wireless TCP, we categorized wireless TCP schemes into three types: end‐to‐end scheme, split connection scheme, and local retransmission scheme, which is similar to the classification proposed in [IEEE/ACM Trans. Networking 1997; 756–769]. To validate the proposed models, we performed ns‐2 simulations. The average differences between the session completion time calculated using the proposed model and the simulation result for three schemes are less than 9, 16, and 7 ms, respectively. Consequently, the proposed model provides a satisfactory means of modelling the TCP performance of short‐lived wireless TCP flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The incorporation of wireless local area networks (WLANs) into existing cellular networks as supplementary access technologies has become an issue of great interest. However, vertical handover (VHO), which allows users to roam between a WLAN and a cellular network, causes an abrupt change in certain link characteristics such as the round trip time and data rate. Owing to such changes, reordering problem and premature timeout occur and trigger unnecessarily fast retransmission during VHO, causing throughput degradation. Thus, we propose a new transmission control protocol (TCP) mechanism, which resolves the reordering problem by suppressing unnecessary retransmission caused by spurious duplicate acknowledgments (dupacks) incurred because of the reordering problem, and prevents premature timeout by employing an adaptive retransmission timer. We analytically investigate the throughput of our proposed TCP scheme. The numerical and simulation results show that our proposed TCP performs better in terms of throughput than other schemes appearing in the literature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Mobile IP has been developed to provide the continuous information network access to mobile users. The performance of Mobile IP mobility management scheme is dependent on traffic characteristics and user mobility. Consequently, it is important to assess this performance in-depth through these factors. This paper introduces a novel analytical model of handoff management in mobile IP networks. The proposed model focuses on the effect the traffic types and their frame error rates on the handoff latency. It is derived based on general distribution of both successful transmission attempts and the residence time to be applicable in all cases of traffic characteristics and user mobility. The impact of the behavior of wireless connection, cell residence time, probability distribution of transmission time and the handoff time is investigated. Numerical results are obtained and presented for both TCP and UDP traffics. As expected, the reliability of TCP leads to higher handoff latency than UDP traffic. It is shown that, higher values of FER increase the probability of erroneous packet transfer across the link layer. A short retransmission time leads to end the connection most likely in the existing FA; however a long retransmission time leads to a large delivery time. The proposed model is robust in the sense that it covers the impact of all the effective parameters and can be easily extended to any distribution.  相似文献   

13.
指出链路层策略在提高无线链路可靠性的同时,对传输层带来的影响,并采用明确丢失应答作为反馈信息,根据不同的数据丢失原因采取相应的措施,保证了对有线拥塞的及时检测和处理能力,使源端能在无线链路传输差错率高的情况下保持较高的传输速率,同时避免传输层与链路层之间不必要的重发竞争,从而提高了异质媒体网络上端到端的数据吞吐量。  相似文献   

14.
Reliable data transfer is one of the most difficult tasks to be accomplished in multihop wireless networks. Traditional transport protocols like TCP face severe performance degradation over multihop networks given the noisy nature of wireless media as well as unstable connectivity conditions in place. The success of TCP in wired networks motivates its extension to wireless networks. A crucial challenge faced by TCP over these networks is how to operate smoothly with the 802.11 wireless MAC protocol which also implements a retransmission mechanism at link level in addition to short RTS/CTS control frames for avoiding collisions. These features render TCP acknowledgments (ACK) transmission quite costly. Data and ACK packets cause similar medium access overheads despite the much smaller size of the ACKs. In this paper, we further evaluate our dynamic adaptive strategy for reducing ACK-induced overhead and consequent collisions. Our approach resembles the sender side's congestion control. The receiver is self-adaptive by delaying more ACKs under nonconstrained channels and less otherwise. This improves not only throughput but also power consumption. Simulation evaluations exhibit significant improvement in several scenarios  相似文献   

15.
The TCP was originally designed for wired networks, assuming transmission errors were negligible. Actually, any acknowledgment time‐out unconditionally triggers the congestion control mechanism, even in wireless networks in which this assumption is not valid. Consequently, in wireless networks, TCP performance significantly degrades. To avoid this degradation, this paper proposes the so‐called split TCP and UDP. In this approach, the access point splits the TCP connection and uses a customized and lighter transport protocol for the wireless segment. It takes advantage of the IEEE 802.11e Hybrid Coordination Function Controlled Channel Access (HCCA) mechanisms to remove redundant TCP functionalities. Specifically, the HCCA scheduler allows disabling of the congestion control in the wireless link. Similarly, the IEEE 802.11e error control service makes possible to eliminate TCP acknowledgments, therefore reducing the TCP protocol overhead. Finally, the usage of an HCCA scheduler permits providing fairness among the different data flows. The proposed split scheme is evaluated via extensive simulations. Results show that split TCP and User Datagram Protocol outperforms the analyzed TCP flavors—specifically designed for wireless environments—and the split TCP solution, achieving up to 95% of end‐user throughput gain. Furthermore, the proposed solution is TCP friendly because TCP flows are not degraded by the presence of flows by using this approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The characteristics of cognitive radio networks have huge impacts on the end‐to‐end performance of the transmission control protocol (TCP) for secondary users. Thus, the existing TCP throughput expression, widely used in wired and wireless networks, is no longer suitable for cognitive radio networks. In this paper, we derive the transmission opportunity of secondary users, taking into account the dynamics of spectrum availability, the overhead and errors of spectrum sensing, as well as the interaction between TCP and lower layers. The amount of transmission opportunity is expressed in terms of effective data transmission time. On the basis of the analysis of the transmission opportunity, an expression of an effective TCP throughput is then derived. To evaluate this effective TCP throughput expression, two cross‐layer optimization problems are formulated as application examples to maximize the transport layer effective throughput and energy utility, respectively. Simulation results show that our analysis on transmission opportunity is accurate, and the derived effective TCP throughput expression is more precise than existing ones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The wireless medium may cause substantial packet losses, rendering Transmission Control Protocol (TCP) inefficient. We propose a cross-layer solution by combining link-layer retransmission techniques and a solution for TCP packet reordering. It is costly to conduct link-layer retransmission with the constraint of orderly packet delivery. We require the link layer to provide reliable packet delivery, but without orderly delivery guarantee, thus transforming the problem of high packet error rates to the problem of packet reordering. The latter is dealt with by enhancing TCP with a solution for packet reordering. We justify our design by analyzing both general scenarios and the case of IEEE 802.11n. Our simulation results demonstrate that the proposed method is effective in improving TCP connection goodput in wireless networks.  相似文献   

18.
In order to satisfy quality‐of‐service requirements for real‐time multimedia applications over wireless networks, IEEE 802.11e has been proposed to enhance wireless‐access functionalities. In IEEE 802.11e, collisions occur frequently as the system load becomes heavy, and then, the latency for successfully transmitting data is lengthened seriously because of contention, handshaking, and backoff overheads for collision avoidance. In this paper, we propose a fragment‐based retransmission (FBR) scheme with quality‐of‐service considerations for IEEE 802.11e‐based wireless local area networks. Our FBR can be used in all proposed fragmentation‐based schemes and greatly decrease redundant transmission overheads. By utilizing FBR, the retransmission delay will be significantly improved to conform strict time requirements for real‐time multimedia applications. We develop an analytical model and a simulation model to investigate the performance of FBR. The capability of the proposed scheme is evaluated by a series of simulations, for which we have encouraging results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The paper proposes a prediction-mode-based filtering mechanism (PMF) to solve the problems of transmission energy wasting caused by time-redundant data in wireless sensor networks (WSN), according to the characteristic of spatio-temporal correlations on sampling series in data-collection. Prior works have suggested several approaches to decrease energy cost during data transmission process via data aggregation tree structure. Distinguish from those methods in above researches, our proposed scheme mainly focus on reducing the temporal redundant degree in event-source to achieve energy-saving effect via self-adaptive filtering structure. The framework of PMF for energy-efficient collection is composed of prediction module for mining the change law of time domain, self-learning module for updating model, and driving module for controlling data filtering operation.Combined with the design of error driving rule and threshold distributing rule, which is the middleware in the above filtering mechanism, the quantity of transmission load in networks can be greatly inhibited on the premise of quality of service (QoS) assurance and energy consumption can be reduced consequently. Finally, the experimental results show that the performance of PMF can significantly outperform some classical data-collection algorithms on energy-saving effect and self-adaptability.  相似文献   

20.
For optical burst-switched (OBS) networks in which TCP is implemented at a higher layer, the loss of bursts can lead to serious degradation of TCP performance. Due to the bufferless nature of OBS, random burst losses may occur, even at low traffic loads. Consequently, these random burst losses may be mistakenly interpreted by the TCP layer as congestion in the network. The TCP sender will then trigger congestion control mechanisms, thereby reducing TCP throughput unnecessarily. In this paper, we introduce a controlled retransmission scheme in which the bursts lost due to contention in the OBS network are retransmitted at the OBS layer. The OBS retransmission scheme can reduce the burst loss probability in the OBS core network. Also, the OBS retransmission scheme can reduce the probability that the TCP layer falsely detects congestion, thereby improving the TCP throughput. We develop an analytical model for evaluating the burst loss probability in an OBS network that uses a retransmission scheme, and we also analyze TCP throughput when the OBS layer implements burst retransmission. We develop a simulation model to validate the analytical results. Simulation and analytical results show that an OBS layer with controlled burst retransmission provides up to two to three orders of magnitude improvement in TCP throughput over an OBS layer without burst retransmission. This significant improvement is primarily because the TCP layer triggers fewer time-outs when the OBS retransmission scheme is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号