首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the mechanical and thermal properties of epoxy composites using two different forms of carbon nanotubes (powder and masterbatch) were investigated. Composites were prepared by loading the surface-modified CNT powder and/or CNT masterbatch into either ductile or brittle epoxy matrices. The results show that 3 wt.% CNT masterbatch enhances Young’s modulus by 20%, tensile strength by 30%, flexural strength by 15%, and 21.1 °C increment in the glass transition temperature (by 34%) of ductile epoxy matrix. From scanning electron microscopy images, it was observed that the CNT masterbatch was uniformly distributed indicating the pre-dispersed CNTs in the masterbatch allow an easier path for preparation of CNT-epoxy composites with reduced agglomeration of CNTs. These results demonstrate a good CNT dispersion and ductility of epoxy matrix play a key role to achieve high performance CNT-epoxy composites.  相似文献   

2.
This study investigated the flexural behaviour of plain concrete (PC) and coir fibre reinforced concrete (CFRC) beams externally strengthened by flax fabric reinforced epoxy polymer (FFRP) composites. PC and CFRC beams without and with FFRP (i.e. 2, 4 and 6 layers) reinforcement were tested under three- and four-point bending. The microstructures of coir fibre, coir/cement matrix, flax/epoxy matrix, and FFRP/concrete interfaces were analysed using scanning electronic microscope (SEM). Test results indicated that the peak load, flexural strength, deflection and fracture energy of both PC and CFRC specimens enhanced proportional to an increase of FFRP layers. Coir further increased load, strength and energy of the specimens remarkably. It was also found that the thickness and coir influenced the failure modes while the test method influenced the load and energy of the specimens remarkably. SEM studies showed effective bond at coir/cement, flax/epoxy and FFRP/concrete interfaces. Therefore, it concluded that natural FFRP composites can be used to repair or retrofit existing concrete structures.  相似文献   

3.
A study on the flexural properties of bidirectional hybrid epoxy composites reinforced by E glass and T700S carbon fibres in inter-ply configurations is presented in this paper. Test specimens are made by hand lay-up and their flexural properties are obtained by three point bend test in accordance with ASTM D790-07. For comparison, the flexural behaviour is also modelled numerically using finite element analysis (FEA), and analytically using the Classic Lamination Theory (CLT). It is shown from the results that in general, good agreement is found between the experimental data and the model predictions. The flexural strength decreases when partial laminas from a carbon/epoxy laminate are replaced by glass/epoxy laminas. No significant hybrid effects for the flexural strength are found from the experiments. However, simulation studies show that hybridisation can potentially improve the flexural strength.  相似文献   

4.
Three-layered structural composites were produced from municipal plastic wastes and wood flour residues to investigate the effects of design parameters on their flexural and impact performance. The studied parameters include wood content, thickness of individual composite layers, as well as stacking sequence and configuration (symmetric and asymmetric structures). The results indicate that the core layer has a lower influence on the flexural properties of structural beams in comparison with the skins. But depending on beam configuration (stacking sequence), different flexural characteristics can be obtained using the same composite layers. The classical beam theory was used to predict the flexural modulus with high precision. In addition, performance of the beams under impact tests was shown to be independent from their stacking sequences and layer thicknesses for each configuration.  相似文献   

5.
This research studied the flexural behavior of cement-based elements reinforced with 3D fabrics. The effects of the through-thickness (Z direction) yarns were examined in terms of four parameters: (i) yarn properties, (ii) varying the composite content of (i.e., coverage by) high-performance aramid yarn, (iii) treatment of the fabric with epoxy, and (iv) 2D and 3D fabric composites were compared. Overall, the 3D fabric composites performed better than the 2D fabric composites, which tended to delaminate. Our results indicate that even though the Z yarns are not oriented in the direction of the applied loads, 3D fabrics still have potential applications as reinforcements for cement-based composites. Indeed, the Z yarns hold the entire fabric together, which leads to improved mechanical anchoring and mechanical properties particularly when the fabric has been treated with epoxy, i.e., to create a stiff reinforcing unit.  相似文献   

6.
We report on the preparation of nanocomposites consisting of biofunctionalized single-walled carbon nanotubes (BF-SWCNTs) reinforcing an ultraviolet curable epoxy polymer by means of biotin–streptavidin interactions. The as-produced laser ablation SWCNTs are biofunctionalized via acid oxidization based purification process and non-covalent functionalization using surfactant, followed by grafting the resulting nanotubes with biomolecules. The biotin-grafted nanotubes are capable of interacting with epoxy groups in presence of streptavidin molecules by which chemical bridges between BF-SWCNTs and epoxy matrix are formed. The biomolecules grafted to the nanotubes surface not only facilitate the load transfer, but also improve the nanotube dispersion into the epoxy matrix, as observed by optical imaging and scanning electron microscopy. Mechanical characterization on the nanocomposite microfibers demonstrates considerable enhancement in both strength (by 76%) and modulus (by 93%) with the addition of only 1 wt.% of BF-SWCNTs. The electrical measurements reveal a clear change in electrical conductivity of nanocomposite microfibers reinforced with 1 wt.% of BF-SWCNTs in comparison to the microfibers containing solely purified carbon nanotubes. These multifunctional nanocomposite materials could be used to fabricate macro and microstructures for a wide variety of applications such as high strength polymer nanocomposite and potential easily-manipulated biosensors.  相似文献   

7.
As the improved damping in fiber-reinforced composites can affect the other mechanical properties, therefore, the aim of this work is to investigate the effect of multiwall carbon nanotube (MWCNT) on the interfacial bond strength, flexural strength and stiffness, toughness and damping properties of hybridized glass-fiber reinforced epoxy (GFRE) composites. Nanophased epoxy resin was used to hybridize unidirectional and quasi-isotropic GFRE composites with [0/±45/90]s and [90/±45/0]s stacking sequences. Results from the interfacial characterizations of the hybridized composites showed improvement up to 30% compared to the control laminates. Hybridization of GFRE laminates with MWCNTs leads to decreasing the flexural and storage moduli, increasing flexural strength, toughness, natural frequencies and damping ratio. A high correlation coefficient of 0.9985 was obtained between static flexural and dynamic storage moduli. The highest flexural strength, flexural and storage moduli and natural frequency of quasi-isotropic laminate were observed for [0/±45/90]s stacking sequence and vice versa for damping ratio.  相似文献   

8.
In this study, carbon fibers (CFs) were coated with graphene nanoplatelets (GnP), using a robust and continuous coating process. CFs were directly immersed in a stable GnP suspension and the coating conditions were optimized in order to obtain a high density of homogeneously and well-dispersed GnP. GnP coated CFs/epoxy composites were manufactured by a prepreg and lay-up method, and the mechanical properties and electrical conductivity of the composites were assessed. The GnP coated CFs/epoxy composites showed 52%, 7%, and 19% of increase in comparison with non-coated CFs/epoxy composites, for 90° flexural strength, 0° flexural strength and interlaminar shear strength, respectively. Meanwhile, incorporating GnP in the CF/epoxy interphase significantly improved the electrical conductivity through the thickness direction by creating a conductive path between the fibers.  相似文献   

9.
The optimum condition of glass fiber/epoxy composites was investigated according to mixing ratio of two epoxy matrices. Novolac type epoxy and isocyanate modified epoxy were used as composites matrix. Based on chemical composition of mixing matrix, optimum mixing ratio of epoxy resins was obtained through FT-IR instrument. In order to investigate thermal stability and interface of epoxy resin, glass transition temperature was observed by DSC instrument, and static contact angle was measured by reflecting microscope. Change of IR peak and Tg was conformed according to different epoxy mixing ratios. After fabrication of glass fiber/epoxy composites, tensile, compression, and flexural properties were tested by UTM by room and high temperature. The composites exhibited best mechanical properties when epoxy mixing ratio was 1:1.  相似文献   

10.
Recent advances in materials science and three‐dimensional (3D) printing hold great promises to conceive new classes of multifunctional materials and components for functional devices and products. Various functionalities (e.g., mechanical, electrical, and thermal properties, magnetism) can be offered by the nano‐ and micro‐reinforcements to the non‐functional pure printing materials for the realization of advanced materials and innovative systems. In addition, the ability to print 3D structures in a layer‐by‐layer manner enables manufacturing of highly‐customized complex features and allows an efficient control over the properties of fabricated structures. Here, the authors present a brief overview mainly over the latest progresses in 3D printing of multifunctional polymer nanocomposites and microfiber‐reinforced composites including the benefits, limitations, and potential applications. Only those 3D printing techniques that are compatible with polymer nanocomposites and composites, that is, materials that have already been used as printing materials, are introduced. The very hot topic of 3D printing of thermoplastic composites featuring continuous microfibers is also briefly introduced.  相似文献   

11.
In this work, the effects of as-produced GO and silane functionalized GO (silane-f-GO) loading and silane functionalization on the mechanical properties of epoxy composites are investigated and compared. Such silane functionalization containing epoxy ended-groups is found to effectively improve the compatibility between the silane-f-GO and the epoxy matrix. Increased storage modulus, glass transition temperature, thermal stability, tensile and flexural properties and fracture toughness of epoxy composites filled with the silane-f-GO sheets are observed compared with those of the neat epoxy and GO/epoxy composites. These findings confirm the improved dispersion and interfacial interaction in the composites arising from covalent bonds between the silane-f-GO and the epoxy matrix. Moreover, several possible fracture mechanisms, i.e. crack pinning/deflection, crack bridging, and matrix plastic deformation initiated by the debonding/delamination of GO sheets, were identified and evaluated.  相似文献   

12.
In this study, hybrid multi-scale composites were developed from glass microfiber fabrics (GFs) and nano-epoxy resins containing electrospun glass nanofibers (EGNFs). The hypothesis was that, through dispersing a small amount of EGNFs into epoxy resin, mechanical properties (particularly out-of-plane mechanical properties) of the resulting hybrid multi-scale composites would be significantly improved. The composites were fabricated by the technique of vacuum assisted resin transfer molding (VARTM). The interlaminar shear strength, flexural properties, impact absorption energy, and tensile properties of the composites were evaluated, and the results were compared to those acquired from GFs/epoxy composite as well as GFs/epoxy composites containing chopped glass microfibers (GMFs); additionally, the reinforcement and/or toughening mechanisms were investigated. The study revealed that the nano-epoxy resin with 0.25 wt.% of EGNFs resulted in substantial improvements on mechanical properties of the resulting hybrid multi-scale composites.  相似文献   

13.
Microwave processing holds great potential for improving current composite manufacturing techniques, substantially reducing cure cycle times, energy requirements and operational costs. In this paper, microwave heating was incorporated into the resin transfer moulding technique. Through the use of microwave heating, a 50% cure cycle time reduction was achieved. The mechanical and physical properties of the produced carbon fibre/epoxy composites were compared to those manufactured by conventional resin transfer moulding. Mechanical testing showed similar values of flexural moduli and flexural strength for the two types of composites after normalisation of the corresponding data to a common fibre volume fraction. A 9% increase of the interlaminar shear strength (ILSS) was observed for the microwave cured composites. This enhancement in ILSS is attributed to a lowering of resin viscosity in the initial stage of the curing process, which was also confirmed via scanning electron microscopy by means of improved fibre wetting and less fibre pull-out. Furthermore, both types of composites yielded minimal void content (<2%). Dynamic mechanical thermal analysis revealed comparable glass transition temperatures for composites produced by both methods. A 15 °C shift in the position of the β-transition peak was observed between thermally and microwave cured composites, suggesting an alteration in the cross-linking path followed.  相似文献   

14.
樊威  李嘉禄 《复合材料学报》2015,32(5):1260-1270
为了探索增强体结构对碳纤维增强聚合物基复合材料(CF-PMCs)热氧老化后弯曲性能的影响,对三维四向编织碳纤维/环氧复合材料(简称为三维编织复合材料)和层合平纹碳布/环氧复合材料(简称为层合复合材料)的热氧老化性能进行了研究。利用FTIR、老化失重、弯曲测试和SEM等手段分析了热氧老化前后的试样。结果表明:热氧老化导致基体树脂的氧化断链以及纤维/基体界面结合力的退化是两种复合材料弯曲强度和弯曲模量下降的原因,弯曲强度比弯曲模量更容易受热氧老化的影响。在相同的热氧老化条件下,层合复合材料的热氧老化失重大于三维编织复合材料的,而三维编织复合材料的弯曲强度和弯曲模量保留率均大于层合复合材料的。在140℃下老化1 200h后,层合复合材料的弯曲强度和弯曲模量保留率分别为74.7%和88.3%,而对应的三维编织复合材料的分别为79.4%和91.5%。因此,采用三维编织预制件作为CF-PMCs的增强体是一种有效的提高其热氧稳定性的方法。  相似文献   

15.
By using an adjacent-layer interlocking method on a weaving machine, multi-layer preform structures are developed. The on-loom interlocking method eliminates the yarn breakage resulting from needle penetration which is the case for off-loom interlocking of fabric layers. The concept of this three-dimensional (3D) fabric design is to bind each pair of adjacent layers at one connecting point in every other plain-weave repeat within each layer. The mechanical properties of the resulting composites are investigated by means of impact, short-beam shear and the long-beam flexural testing. The failure mechanisms found in 3D on-loom interlocked composites include fiber breakage, fiber debonding and fiber pull-out.  相似文献   

16.
采用真空辅助RTM工艺制备了三维编织碳纤维增强环氧树脂(C3D/EP)复合材料,通过对树脂的粘度特性和固化特性的分析,确定了最佳的工艺参数.金相显微镜对复合材料微观结构的观察表明树脂对纤维的浸润良好.同时,还研究了该工艺制备的C3D/EP复合材料的力学性能,结果表明随着纤维体积比的增加,复合材料的硬度、弯曲强度和冲击强度均提高,断口的扫描电镜观察表明复合材料的破坏方式是以脆性断裂为主.  相似文献   

17.
In this paper, an approach towards realising novel multifunctional polymer composites is presented. A series of structural capacitor materials made from carbon fibre reinforced polymers have been developed, manufactured and tested. The structural capacitor materials were made from carbon fibre epoxy pre-preg woven laminae separated by a paper or polymer film dielectric separator. The structural capacitor multifunctional performance was characterised measuring capacitance, dielectric strength and interlaminar shear strength. The developed structural CFRP capacitor designs employing polymer film dielectrics (PA, PC and PET) offer remarkable multifunctional potential.  相似文献   

18.
Electrospun thermoplastic nanofibres were employed to toughen carbon/epoxy composites by direct deposition on carbon fibre fabrics, prior to resin impregnation and curing. The toughening mechanism was investigated with respect to the critical role of phase morphology on the toughening effect in carbon/epoxy composites. The influences of solubility in epoxy and melting characteristics of thermoplastics were studied towards their effects on phase structure and delamination resistance. For the three different thermoplastic nanofibre interlayers used in this work, i.e. poly(ε-caprolactone) (PCL), poly(vinylidene fluoride) (PVDF) and polyacrylonitrile (PAN) nanofibre interlayers, only PCL nanofibres produced toughening. Although cylinder-shaped fibrous macrophases existed in all three interlayer regions, only PCL nanofibres had polymerisation-induced phase separation with epoxy, forming ductile thermoplastic-rich particulate microphases on the delamination plane. These findings clearly show that the polymerisation-induced phase separation is critical to the interlayer toughening by thermoplastic nanofibres. An optimal concentration (15 wt.%) of PCL solution for electrospinning was found to produce composites with enhanced mode I interlaminar fracture toughness (GIC), stable crack growth and maintained flexural strength and modulus.  相似文献   

19.
The paucity of structural defects in carbon nanotube (CNT) with unrivalled mechanical properties has always posed an interest to material scientists for its potential incorporation in soft polymer resins to achieve superior mechanical stability. Present investigation focuses on the assessment of flexural behaviour of glass/epoxy (GE) and multiwalled carbon nanotubes (MWCNT) embedded glass/epoxy (0.3 wt. % of epoxy) (CNT-GE) composites at different in-service environmental temperatures. In-situ 3-point bend tests were performed on GE and CNT-GE composites at −80 °C, −40 °C, room temperature (20 °C), 70 °C and 110 °C temperatures at 1 mm/min crosshead speed. The results revealed that at 110 °C temperature, the flexural strength of GE and CNT-GE composites was significantly decreased by 67% and 81% respectively in comparison to their strength at −80 °C temperature. Similarly, 38% and 77% decrement in modulus was noted for GE and CNT-GE composites respectively. Dynamic mechanical thermal analysis (DMTA) was carried out in the temperature range of −100 °C to 200 °C to correlate the mechanical and thermo-mechanical response of both the material systems. Addition of 0.3 wt. % MWCNT in GE composite resulted in lowering of glass transition temperature (Tg) by 12 °C. Furthermore, to understand various possible deformation and failure mechanisms, the post failure analysis of the fractured specimens, tested at different temperatures, was carried out using scanning electron microscope (SEM). The critical parameters needed during designing composite structures were calculated and modelled using Weibull constitutive model.  相似文献   

20.
An experimental study has been conducted to design and fabricate smart composite beams embedded with prestrained nitinol wire actuators. The developed fabrication process allowed both quasi-isotropic E-glass/epoxy and carbon/epoxy hosts to be eccentrically embedded with 10 parallel prestrained wires with a purpose-made alignment device and cured successfully in an autoclave. Smart composite beams of three different lengths were made for each type of host. Both single-cycle and multi-cycle thermomechanical bending actuations of these beams in the cantilever set-up were characterised experimentally by applying various levels of electric current to the nitinol wires. The performance characteristics showed that the present fabrication process was repeatable and reliable. While the end deflections of up to 41 mm were easily achieved from smart E-glass/epoxy beams, the limited end deflections were observed from the smart carbon/epoxy beams due primarily to our inability to insulate the nitinol wires. Moreover, it seemed necessary to overheat the prestrained wires to much higher temperatures beyond the complete reverse transformation in order to generate recovery stress. The longer beams showed greater actuation rates and took less time to reach the same level of deflection. It was found that the actuation capability derived from single-cycle actuation exercises was not suited to multi-cycling actuations and could result in premature failure of multi-cycled smart beams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号