共查询到20条相似文献,搜索用时 2 毫秒
1.
Utilizing synergetic effect of different ingredients is an important strategy to design new multi-functional composites. In this work, high-strength graphene oxide and conductive polyaniline were selected to dope into divinylbenzene to fabricate a new type carbon fiber reinforced polymer laminates, where a cooperative improvement of through-thickness electrical conductivity and interlaminar shear strength was observed. With addition of 15 wt% of PANI-GO at the optimized weight ratio of 60:1 in the CF/DVB-PANI-GO, 150% enhancement of the electrical conductivity compared to the CF/DVB-PANI, and 76% enhancement of the ILSS compared to the CF/DVB-GO were realized. Our laminates reach 66% in ILSS of that for the conventional CFRP made of epoxy, but the former features about 103 times higher AC conductivity. The mechanism for such a synergic enhancement for both electrical and mechanical performance was investigated by rheology measurement and scanning electron microscopy, where uniform 3-D network formed by PANI/GO has been clearly observed. 相似文献
2.
For the first time, electrospun carbon nanofibers (ECNFs, with diameters and lengths of ∼200 nm and ∼15 μm, respectively) were explored for the preparation of nano-epoxy resins; and the prepared resins were further investigated for the fabrication of hybrid multi-scale composites with woven fabrics of conventional carbon fibers via the technique of vacuum assisted resin transfer molding (VARTM). For comparison, vapor growth carbon nanofibers (VGCNFs) and graphite carbon nanofibers (GCNFs) were also studied for making nano-epoxy resins and hybrid multi-scale composites. Unlike VGCNFs and GCNFs that are prepared by bottom-up methods, ECNFs are produced through a top-down approach; hence, ECNFs are more cost-effective than VGCNFs and GCNFs. The results indicated that the incorporation of a small mass fraction (e.g., 0.1% and 0.3%) of ECNFs into epoxy resin would result in substantial improvements on impact absorption energy, inter-laminar shear strength, and flexural properties for both nano-epoxy resins and hybrid multi-scale composites. In general, the reinforcement effect of ECNFs was similar to that of VGCNFs, while it was higher than that of GCNFs. 相似文献
3.
The aims of the present study are to produce bamboo fiber reinforced composite (BFRC) with high yield and to investigate the mechanical properties of BFRC comparing with those of commercial bamboo scrimber (BS) and laminated bamboo lumber (LBL). A novel process was developed for production of BFRC using oriented bamboo fiber mat (OBFM) made by a pilot machine. The yield and the mechanical properties of BFRC were investigated and analyzed in comparing with those of raw bamboo and other bamboo-based composites. The results show that the novel process produces 92.54% yield of OBFM due to without any chemical and special removing of inner and outer layer of bamboo during processing. In addition, all the mechanical properties and the variability of BFRC were significantly enhanced comparing with those of raw bamboo and other bamboo-based composites. 相似文献
4.
Carbon nanotube filled polymer composite can be used as sensitive material of flexible pressure sensor. By using solution mixing method, carbon nanotubes are dispersed into silicone rubber matrix to fabricate the composite. The piezoresistivities of the composite with different carbon nanotube concentrations under repeated compressions are researched quantitatively. The monotonicity of the piezoresistivity is dependent on the content of carbon nanotube and the range of the applied pressure. The reproducibility error of the piezoresistivity decreases with the increase of the compression cycles. The experimental data of the piezoresistivity are fitted by the linear combination of two exponential functions. The piezoresistive mechanism is studied qualitatively by analyzing the changes in the carbon nanotube network. 相似文献
5.
Susceptibility to matrix driven failure is one of the major weaknesses of continuous-fiber composites. In this study, helical-ribbon carbon nanofibers (CNF) were dispersed in the matrix phase of a continuous carbon fiber-reinforced composite. Along with an unreinforced control, the resulting hierarchical composites were tested to failure in several modes of quasi-static testing designed to assess matrix-dominated mechanical properties and fracture characteristics. Results indicated CNF addition offered simultaneous increases in tensile stiffness, strength and toughness while also enhancing both compressive and flexural strengths. Short-beam strength testing resulted in no apparent improvement while the fracture energy required for the onset of mode I interlaminar delamination was enhanced by 35%. Extrinsic toughening mechanisms, e.g., intralaminar fiber bridging and trans-ply cracking, significantly affected steady-state crack propagation values. Scanning electron microscopy of delaminated fracture surfaces revealed improved primary fiber–matrix adhesion and indications of CNF-induced matrix toughening. 相似文献
6.
7.
This study uses a melt extrusion method, a method for producing wires, to coat polyester (PET) yarns with polypropylene (PP) and multi-walled carbon nanotubes (MWCNTs). The resulting PP/MWCNTs-coated PET conductive yarns are tested for their tensile properties, processability, morphology, melting and crystallization behaviors, electrical conductivity, and applications. The test results indicate that tensile strength of the conductive yarns increases with an increase in the coiling speed that contributes to a more single-direction-orientated MWCNTs arrangement as well as a greater adhesion between PP/MWCNTs and PET yarns. 8 wt% MWCNTs results in an 18 °C higher crystallization temperature (Tc) of PP and an electrical conductivity of 0.8862 S/cm. The test results of this study have proven that this form of processing technology can prepare PP/MWCNTs-coated PET conductive yarns that have satisfactory tensile properties and electrical conductivity, and can be used in functional woven fabrics and knitted fabrics. 相似文献
8.
The cryogenic interlaminar shear strength (ILSS) at cryogenic temperature (77 K) of glass fabric (GF)/epoxy composites is investigated as a function of the graphene oxide (GO) weight fraction from 0.05 to 0.50 wt% relative to epoxy. For the purpose of comparison, the ILSS of the GF/epoxy composites is also examined at room temperature (RT, 298 K). The results show that the cryogenic ILSS is greatly improved by about 32.1% and the RT ILSS is enhanced by about 32.7% by the GO addition at an appropriate content of 0.3 wt% relative to epoxy. In addition, the ILSS of the composite at 77 K is much higher than that at RT due to the relatively strong interfacial GF/epoxy adhesion at 77 K compared to the RT case. 相似文献
9.
Peng Guo Xiaohong Chen Xinchun Gao Huaihe Song Heyun Shen 《Composites Science and Technology》2007,67(15-16):3331-3337
Multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites were fabricated by using ultrasonication and the cast molding method. In this process, MWCNTs modified by mixed acids were well dispersed and highly loaded in an epoxy matrix. The effects of MWCNTs addition and surface modification on the mechanical performances and fracture morphologies of composites were investigated. It was found that the tensile strength improved with the increase of MWCNTs addition, and when the content of MWCNTs loading reached 8 wt.%, the tensile strength reached the highest value of 69.7 MPa. In addition, the fracture strain also enhanced distinctly, implying that MWCNTs loading not only elevated the tensile strength of the epoxy matrix, but also increased the fracture toughness. Nevertheless, the elastic modulus reduced with the increase of MWCNTs loading. The reasons for the mechanical property changes are discussed. 相似文献
10.
In this paper, the mechanical properties of vapor grown carbon nanofiber (VGCNF)/polymer composites are reviewed. The paper starts with the structural and intrinsic mechanical properties of VGCNFs. Then the major factors (filler dispersion and distribution, filler aspect ratio, adhesion and interface between filler and polymer matrix) affecting the mechanical properties of VGCNF/polymer composites are presented. After that, VGCNF/polymer composite mechanical properties are discussed in terms of nanofibers dispersion and alignment, adhesion between the nanofiber and polymer matrix, and other factors. The influence of processing methods and processing conditions on the properties of VGCNF/polymer composite is also considered. At the end, the possible future challenges for VGCNF and VGCNF/polymer composites are highlighted. 相似文献
11.
Poly(3-alkylthiophene) (P3AT) with a high Seebeck coefficient has recently been reported. However, P3AT/inorganic conductive composites exhibit relatively poor thermoelectric performance because of their low electrical conductivity. In this work, carbon fiber sheets with a high electrical conductivity were chosen as the inorganic phase, and poly(3-octylthiophene)(P3OT)/carbon fiber composites were prepared by casting P3OT solution onto the carbon fiber sheets. The carbon fiber sheets incorporated into the composites can provide good electrical conductivity, and P3OT can provide a high Seebeck coefficient. The highest power factor of 7.05 μW m−1 K−2 was obtained for the composite with 50 wt% P3OT. This work suggests a promising method for preparing large-scale thermoelectric composites with excellent properties. 相似文献
12.
In this work, carbon composite bipolar plates consisting of synthetic graphite and milled carbon fibers as a conductive filler and epoxy as a polymer matrix developed using compression molding is described. The highest electrical conductivity obtained from the described material is 69.8 S/cm for the in-plane conductivity and 50.34 S/cm for the through-plane conductivity for the composite containing 2 wt.% carbon fiber (CF) with 80 wt.% filler loading. This value is 30% greater than the electrical conductivity of a typical graphite/epoxy composite with 80 wt.% filler loading, which is 53 S/cm for the in-plane conductivity and 40 S/cm for the through-plane conductivity. The flexural strength is increased to 36.28 MPa compared to a single filler system, which is approximately 25.22 MPa. This study also found that the General Effective Media (GEM) model was able to predict the in-plane and through-plane electrical conductivities for single filler and multiple filler composites. 相似文献
13.
Natural fiber reinforced composites have attracted interest due to their numerous advantages such as biodegradability, dermal non-toxicity and with promising mechanical strength. The desire to mitigate climate change due to greenhouse gas emissions, biodegradable resins are explored as the best forms of polymers for composites apart from their synthetic counterparts which are non-renewable. In this study biodegradable bark cloth reinforced green epoxy composites are developed with view of application to automotive instrument panels. The optimum curing temperature of green epoxy was shown to be 120 °C. The static properties showed a tensile strength of 33 MPa and flexural strength of 207 MPa. The dynamic mechanical properties, frequency sweep showed excellent fiber-matrix bonding of the alkali treated fabric with the green epoxy polymer with glass transition temperature in the range of 160 °C–180 °C. Treatment of the fabric with alkali positively influenced the mechanical properties of the fabric reinforced biocomposites. 相似文献
14.
Multi-phase composites have been studied by incorporating carbon nanotubes (CNTs) as a secondary reinforcement in an epoxy matrix which was then reinforced with glass fiber mat. Different types of CNTs e.g. amino functionalized carbon nanotubes (ACNT) and pristine carbon nanotubes (PCNT) were homogeneously dispersed in the epoxy matrix and two-ply laminates were fabricated using vacuum-assisted resin infusion molding technique. The issues related to CNT dispersion and interfacial bonding and its affect on the mechanical properties have been studied. An important finding of this study is that PCNT scores over ACNT in composites prepared under certain conditions. This is a very significant finding since PCNT is available at a much lower cost than ACNT. 相似文献
15.
Carbon black (CB)/polypropylene (PP) with a novel segregated structure was fabricated. For this composite, CB particles were selectively distributed on the interfaces between PP polyhedrons, leading to a lower percolation threshold (2.34 vol%). Liquid sensing behaviors of the composite were studied. Nice selectivity, high response rate and high response intensity have been achieved. The designed interfaces, which accelerate the penetration of solvents under the action of the capillary effect, are responsible for the nice performances. A fine reproducibility has also been obtained. This study offers an approach for manufacturing high performance liquid sensor by tailoring the microstructure of a composite. 相似文献
16.
The recently proposed Six-Point Edge Crack Torsion (6ECT) test was used to evaluate the mode III interlaminar fracture of carbon/epoxy laminates. Plate specimens with starter delaminations in 0/0, 0/90 and 0/45 interfaces were tested. Data reduction was performed with an effective crack scheme validated in a previous numerical study. The tests allowed the evaluation of fairly unambiguous initiation GIIIC values and of subsequent R-curves. Examinations of specimen cross-section showed considerable lengths of pure interlaminar propagation in specimens with starter delaminations in 0/90 and 0/45 interfaces. The latter specimens had the lowest initiation GIIIC values. 相似文献
17.
Wei Liu Haibo ZhaoYoku Inoue Xin WangPhilip D. Bradford Hyungsup KimYiping Qiu Yuntian Zhu 《Composites Part A》2012,43(4):587-592
For practical application of carbon nanotube (CNT)/polymer composites, it is critical to produce the composites at high speed and large scale. In this study, multi-walled carbon nanotubes (MWNTs) with large diameter (∼45 nm) and polyvinyl alcohol (PVA) were used to increase the processing speed of a recently developed spraying winding technique. The effect of the different winding speed and sprayed solution concentration to the performance of the composite films were investigated. The CNT/PVA composites exhibit tensile strength of up to 1 GPa, and modulus of up to 70 GPa, with a CNT weight fraction of 53%. In addition, an electrical conductivity of 747 S/cm was obtained for the CNT/PVA composites. The good mechanical and electrical properties are attributed to the uniform CNTs and PVA matrix integration and the high degree of tube alignment. 相似文献
18.
We report the results of an extensive multi-stress ratio experimental study on the axial fatigue behavior of an all-carbon hierarchical composite laminate, in which carbon nanofibers (CNFs) are utilized alongside traditional micron-sized carbon fibers. Primary carbon fibers were arranged in matrix-dominated biax ±45° lay-ups in order to establish matrix and matrix/fiber interaction based performance. CNFs were matrix dispersed by three-roll calender milling. Results indicate that the CNF-reinforced composites collectively possess improved fatigue and static properties over their unmodified counterparts. Large mean lifetime improvements of 150–670% were observed in fully compressive, tensile and tensile dominated loadings. Enhancements are attributed to the high interface density and damage shielding effect of the CNFs within the matrix. Further improvements are believed to occur when the nanofibers arrest and redistribute small scale, slowly propagating matrix cracks at low applied stresses. These results highlight the ability of a nanometer-sized reinforcing phase to actively participate and enhance matrix properties while moving toward a cost effective alternative to current material solutions. 相似文献
19.
Shape memory silica/epoxy composites were successfully prepared by hydrolysis of tetraethoxysilane (TEOS) within the epoxy matrix via latex, freeze-drying, and hot-press molding method. The silane coupling agent 3-triethoxysilylpropylamine (KH550) was introduced to improve the interfacial properties between the in-situ generated silica particle and epoxy matrix. The morphology structure and the effect of the content of the in-situ formed silica on the mechanical and shape memory properties of the silica/epoxy composites were studied. The experimental results indicated that the silica particles were homogenously dispersed and well incorporated into the epoxy matrix. Significant improvements were achieved in the mechanical property of the organic–inorganic hybrid materials. The silica/epoxy composites exhibited high shape recovery and fixity ratio approximately 100% even after 10 thermo-mechanical cycles. 相似文献
20.
P.E. DeierlingO.I. Zhupanska 《Composites Science and Technology》2011,71(14):1659-1664
Electrical and thermal behavior of the carbon fiber-reinforced epoxy composites subjected to relatively high (up to 75 A) steady electric currents is studied. A fully automated experimental setup for real time measurements of the electric current, resistance, voltage, and temperature in carbon fiber-reinforced epoxy matrix composites has been developed. A series of electrical characterization tests on IM7/977-3 unidirectional and symmetric cross-ply composite laminates have been performed and the effects of electric current magnitude and duration, electrical resistance, and associated thermal effects have been investigated. It is determined that electrical resistance exhibits time-dependent behavior. It is also found that application of an electric current leads to a significant temperature rise in the composites that is a result of the intense Joule heat produced in the electrically conductive carbon fibers as well as in the composite-electrode contact. 相似文献