首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal behaviour of polystyrene composites reinforced with short sisal fibres was studied by means of thermogravimetric and dynamic mechanical thermal analysis. The thermal stability of the composites was found to be higher than that of sisal fibre and the PS matrix. The effects of fibre loading, fibre length, fibre orientation and fibre modification on the dynamic mechanical properties of the composites were evaluated. Fibre modifications were carried out by benzoylation, polystyrene maleic anhydride coating and acetylation of the fibre and the treatments improved the fibre-matrix adhesion. PS/sisal composites are thermally more stable than unreinforced PS and sisal fibre. The addition of 10% fibre considerably increases the modulus but the increase is found to level off at higher fibre loadings. The Tg values of the composites are lower than that of unreinforced PS and may be attributed to the presence of some residual solvents in the composites entrapped during the composite preparation. The treated-fibre composites show better properties than those of untreated-fibre composites. The Arrhenius relationship has been used to calculate the activation energy of the glass transition of the composites. A master curve is constructed based on time-temperature superposition principle.  相似文献   

2.
Chicken feather fiber (CFF)/reinforced poly(lactic acid) (PLA) composites were processed using a twin-screw extruder and an injection molder. The tensile moduli of CFF/PLA composites with different CFF content (2, 5, 8 and 10 wt%) were found to be higher than that of pure PLA, and a maximum value of 4.2 GPa (16%) was attained with 5 wt% of CFF without causing any substantial weight increment. The morphology, evaluated by scanning electron microscopy (SEM), indicated that an uniform dispersion of CFF in the PLA matrix existed. The mechanical and thermal properties of pure PLA and CFF/PLA composites were compared using dynamic mechanical analysis (DMA), thermomechanical analysis (TMA) and thermogravimetric analysis (TGA). DMA results revealed that the storage modulus of the composites increased with respect to the pure polymer, whereas the mechanical loss factor (tan δ) decreased. The results of TGA experiments indicated that the addition of CFF enhanced the thermal stability of the composites as compared to pure PLA. The outcome obtained from this study is believed to assist the development of environmentally-friendly composites from biodegradable polymers, especially for converting agricultural waste – chicken feather into useful products.  相似文献   

3.
In recent years, the use of flax fibres as reinforcement in composites has gained popularity due to an increasing requirement for developing sustainable materials. Flax fibres are cost-effective and offer specific mechanical properties comparable to those of glass fibres. Composites made of flax fibres with thermoplastic, thermoset, and biodegradable matrices have exhibited good mechanical properties. This review presents a summary of recent developments of flax fibre and its composites. Firstly, the fibre structure, mechanical properties, cost, the effect of various parameters (i.e. relative humidity, various physical/chemical treatments, gauge length, fibre diameter, fibre location in a stem, oleaginous, mechanical defects such as kink bands) on tensile properties of flax fibre have been reviewed. Secondly, the effect of fibre configuration (i.e. in forms of fabric, mat, yarn, roving and monofilament), manufacturing processes, fibre volume, and fibre/matrix interface parameters on the mechanical properties of flax fibre reinforced composites have been reviewed. Next, the studies of life cycle assessment and durability investigation of flax fibre reinforced composites have been reviewed.  相似文献   

4.
The mechanical, thermal and electrical properties of modified AlN/polyetherimide (PEI) composites were investigated. It revealed that the surface of AlN modified by silane could effectively increase the adhesion with matrix, which was beneficial for AlN to reinforce the polyetherimide matrix. After silane modification, the AlN showed good dispersion and wetibility in the polyetherimide matrix and imparted excellent mechanical, electrical and thermal properties. The tensile strength, modulus, electrical and thermal stability were improved with the increasing of AlN content. The tensile strength of AlN/PEI composites increased by 27% when 12.6 vol.% AlN was added to neat polyetherimide. The thermal conductivity of the 57.4 vol.% AlN/PEI composites increased three times compared with neat polyetherimide. Test results indicate that the silane grafted AlN incorporated into the polyetehetimide matrix effectively enhance the thermal stability, thermal conductivity and mechanical properties of the polyetherimide composites.  相似文献   

5.
The mechanical behaviour of fabric-reinforced composites can be affected by several parameters, such as the properties of fabrics and matrix, the fibre content, the bond interphase and the anchorage ability of fabrics. In this study, the effects of the fibre type, the fabric geometry, the physical and mechanical properties of fabrics and the volume fraction of fibres on the tensile stress–strain response and crack propagation of cementitious composites reinforced with natural fabrics were studied. To further examine the properties of the fibres, mineral fibres (glass) were also used to study the tensile behaviour of glass fabric-reinforced composites and contrast the results with those obtained for the natural fabric-reinforced composites. Composite samples were manufactured by the hand lay-up moulding technique using one, two and three layers of flax and sisal fabric strips and a natural hydraulic lime (NHL) grouting mix. Considering fabric geometry and physical properties such as the mass per unit area and the linear density, the flax fabric provided better anchorage development than the sisal and glass fabrics in the cement-based composites. The fabric geometry and the volume fraction of fibres were the parameters that had the greatest effects on the tensile behaviour of these composite systems.  相似文献   

6.
Composites have set the standard for high strength materials for several decades. With the discovery of nanotubes, new possibilities for reinforced composites have arisen, with potential mechanical properties superior to those of currently available materials. This paper reports the properties of epoxy matrix reinforced with fibres of carbon nanotubes (CNTs) which, in many ways, are similar to standard composites reinforced with commercial fibres. The composites were formed by the back diffusion of the uncured epoxy into an array of aligned fibres of CNTs. The fibre density and volume fraction were measured from thermogravimetric analysis (TGA). Properties in tension and compression were measured, and the level of fibre–matrix interaction analysed fractographically. The results show the significant potential for this route to CNT reinforcement.  相似文献   

7.
Bamboo fibre reinforced composites are not fully utilised due to the limited understanding on their mechanical characteristics. In this paper, the effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre reinforced polyester composites were investigated. Laminates were fabricated using untreated and sodium hydroxide (NaOH) treated (4–8% by weight) randomly oriented bamboo fibres and tested at room and elevated temperature (40, 80 and 120 °C). An improvement in the mechanical properties of the composites was achieved with treatment of the bamboo fibres. An NaOH concentration of 6% was found optimum and resulted in the best mechanical properties. The bending, tensile and compressive strength as well as the stiffness of this composite are 7, 10, 81, and 25%, respectively higher than the untreated composites. When tested up to 80 °C, the flexural and tensile strength are enhanced but the bending stiffness and compressive strength decreased as these latter properties are governed by the behaviour of resin. At 40 and 80 °C, the bond between the untreated fibres and polyester is comparable to that of treated fibres and polyester which resulted in almost same mechanical properties. However, a significant decrease in all mechanical properties was observed for composites tested at 120 °C.  相似文献   

8.
Cellulose and abaca fibre reinforced polyoxymethylene (POM) composites were fabricated using an extrusion coating (double screw) compounding followed by injection moulding. The long cellulose or abaca fibres were dried online with an infrared dryer and impregnated fibre in matrix material by using a special extrusion die. The fibre loading in composites was 30 wt.%. The tensile properties, flexural properties, Charpy impact strength, falling weight impact strength, heat deflection temperature and dynamic mechanical properties were investigated for those composites. The fibre pull-outs, fibre matrix adhesion and cracks in composites were investigated by using scanning electron microscopy. It was observed that the tensile strength of composites was found to reduce by 18% for abaca fibre and increase by 90% for cellulose fibre in comparison to control POM. The flexural strength of composites was found to increase by 39% for abaca fibre and by 144% for cellulose fibre. Due to addition of abaca or cellulose fibre both modulus properties were found to increase 2-fold. The notched Charpy impact strength of cellulose fibre composites was 6-fold higher than that of control POM. The maximum impact resistance force was shorted out for cellulose fibre composites. The heat deflection temperature of abaca and cellulose fibre composites was observed to be 50 °C and 63 °C higher than for control POM respectively.  相似文献   

9.
The objective of this research was to study the potential of waste agricultural residues such as rice-husk fiber (RHF), bagasse fiber (BF), and waste fish (WF) as reinforcing and biodegradable agents for thermoplastic composites. Addition of maleic anhydride grafted polypropylene (MAPP) as coupling agent was performed to promote polymer/fiber interfacial adhesion. Several composites with various polypropylene (PP) as polymer matrix, RHF, BF, WF, and MAPP contents were fabricated by melt compounding in a twin-screw extruder and then by injection molding. The resulting composites were evaluated through mechanical properties in terms of tensile, flexural, elongation at break and Izod notched impact following ASTM procedures. Biodegradability of the composites was measured using soil burial test in order to study the rates of biodegradation of the composites. In general, the addition of RHF and BF promoted an increase in the mechanical properties, except impact strength, compared with the neat PP. According to the results, WF did not have reinforcing effect on the mechanical properties, while it could considerably improve the biodegradation of the composites. It was found that the composites with high content of WF had higher degradation rate. Except impact strength, all mechanical properties were found to enhance with increase in cellulosic fiber loading In addition, mechanical properties and biodegradability of the composites made up using RHF was superior to those of the composites fabricated with BF, due to its morphological (aspect ratio) characteristics.  相似文献   

10.
The objective of this work was to investigate the use of hydrothermal pre-treatment and enzymatic retting to remove non-cellulosic compounds and thus improve the mechanical properties of hemp fibre/epoxy composites. Hydrothermal pre-treatment at 100 kPa and 121 °C combined with enzymatic retting produced fibres with the highest ultimate tensile strength (UTS) of 780 MPa. Compared to untreated fibres, this combined treatment exhibited a positive effect on the mechanical properties of hemp fibre/epoxy composites, resulting in high quality composites with low porosity factor (αpf) of 0.08. Traditional field retting produced composites with the poorest mechanical properties and the highest αpf of 0.16. Hydrothermal pretreatment at 100 kPa and subsequent enzymatic retting resulted in hemp fibre composites with the highest UTS of 325 MPa, and stiffness of 38 GPa with 50% fibre volume content, which was 31% and 41% higher, respectively, compared to field retted fibres.  相似文献   

11.
This study concerns the preparation and study of wood–plastic composites (WPCs). The matrix used was high density polyethylene. Results showed that the addition of wood fibres increased mechanical properties (tensile, flexural and compression) of the neat plastic remarkably. Additives such as fire retardants and light stabilizers were added to improve properties like fire retardancy and durability performance. The addition of fire retardants could lead to auto-extinguishing materials when ammonium polyphosphate or aluminium hydroxide were used. Outdoor durability depended on both the light stabilizer and the fire retardant added to the formulation. The fire retardant worsened the outdoor durability. However, stabilized fire retarded-WPCs showed much lower fading than non-stabilized non-fire retarded composites and several industrial samples. Stabilized composites with aluminium hydroxide as fire retardant showed the best overall results with a fading degree even lower than the stabilized non-fire retarded composite.  相似文献   

12.
Mechanical and thermal properties of non-crimp glass fiber reinforced clay/epoxy nanocomposites were investigated. Clay/epoxy nanocomposite systems were prepared to use as the matrix material for composite laminates. X-ray diffraction results obtained from natural and modified clays indicated that intergallery spacing of the layered clay increases with surface treatment. Tensile tests indicated that clay loading has minor effect on the tensile properties. Flexural properties of laminates were improved by clay addition due to the improved interface between glass fibers and epoxy. Differential scanning calorimetry (DSC) results showed that the modified clay particles affected the glass transition temperatures (Tg) of the nanocomposites. Incorporation of surface treated clay particles increased the dynamic mechanical properties of nanocomposite laminates. It was found that the flame resistance of composites was improved significantly by clay addition into the epoxy matrix.  相似文献   

13.
In this study, we measure and compare the mass distribution, morphology and tensile properties of elementary flax fibres (Eden variety) along the stem. A significant improvement is found in the tensile properties of elementary fibres from the base to the middle of the stem, with the Young’s modulus and breaking stress being increased by 19.3% and 56.6%, respectively. UD thermoset composites were manufactured with fibres from the bottom, middle and top of the stem. The efficiency of the reinforcement is lowest with bottom fibres, which appear to be poorly individualized and have many cortical residues on their surface. Several scenarios are proposed to select the most suitable fibres according to the desired mechanical properties of the composite.  相似文献   

14.
Injection molded biocomposites from a new biodegradable polymer blend based matrix system and miscanthus natural fibers were successfully fabricated and characterized. The blend matrix, a 40:60 wt% blend of poly(butylene adipate-co-terephthalate), PBAT and poly(butylene succinate), PBS was chosen based on their required engineering properties for the targeted biocomposite uses. A big scientific challenge of biocomposites is in improving impact strength within the desired tensile and flexural properties. The stiffness–toughness balance is one of the biggest scientific hurdles in natural fiber composites. Thus, the key aspect of the present study was in investigating an in-depth statistical approach on influence of melt processing parameters on the impact strength of the biocomposite. A full factorial experimental design was used to predict the statistically significant variables on the impact strength of the PBS/PBAT/miscanthus biocomposites. Among the selected processing parameters, fiber length has a most significant effect on the impact strength of the biocomposites.  相似文献   

15.
A novel composite material is reported, in which tension, applied to polymeric fibres, is released prior to moulding them into a matrix. Following matrix solidification, compressive stresses imparted by the viscoelastically strained fibres impede crack propagation. Previous Charpy impact studies had demonstrated that these viscoelastically prestressed composites could absorb typically 25–30% more energy than control (unstressed) counterparts and the current study focuses on their tensile behaviour as a function of fibre volume fraction, Vf. Tensile testing was performed on continuous unidirectional nylon 6,6 fibre–epoxy resin samples. Compared with control counterparts, the results showed that viscoelastic prestressing improved tensile properties, the effects being Vf-dependent. Increases in tensile strength, modulus and energy absorbed (to 0.25 strain) exceeded 15%, 30% and 40%, respectively, at an optimum Vf, this being 35–40%. Strain-to-failure was reduced by 10–20%, thereby lowering any improvement in tensile toughness (energy absorbed to fracture) to <10%. Mechanical properties of the fibres themselves were not significantly influenced by the treatment used for generating composite prestress, and we propose that the observed improvements to tensile properties may be attributed to: (i) direct contribution from compressive stress, (ii) attenuation of the dynamic overstress effect on fibre fracture and (iii) improved mechanical integrity through a more collective response from fibres to tensile loads.  相似文献   

16.
The main goals of this work were to study the effect of different chemical treatments on sisal fiber bundles tensile properties as well as on tensile properties of composites based on poly(lactic acid) (PLA) matrix and sisal fibers. For this purpose, sisal fibers were treated with different chemical treatments. After treating sisal fibers the tensile strength values decreased respect to untreated fiber ones, especially when the combination of NaOH + silane treatment was used. Taking into account fiber tensile properties and fiber/PLA adhesion values, composites based on silane treated fibers would show the highest tensile strength value. However, composites based on alkali treated and NaOH + silane treated fibers showed the highest tensile strength values. Finally, experimental tensile strength values of composites were compared with those values obtained using micromechanical models.  相似文献   

17.
All-cellulose composites (ACCs) were prepared by partial dissolution in ionic liquid and compared to composites with epoxy matrix. Wide-angle X-ray diffraction and scanning electron microscopy were used to reveal differences in the structure of the composites. In tensile tests, lyocell-fibre based ACCs showed similar strength and stiffness, yet superior extensibility compared to lyocell-epoxy composites. However, when flax fibres were used, tensile properties clearly inferior to flax-epoxy were observed. Dynamic-mechanical and thermogravimetric analysis revealed a favourable behaviour for ACC in terms of more diffuse thermal softening and increased resistance to thermal degradation.  相似文献   

18.
Endless rayon fibres (Cordenka®) were used to reinforce polyhydroxybutyrate (PHB) nanocomposites containing 2.5 wt.% nanofibrillated cellulose (NFC) to create truly green hierarchical composites. Unidirectional (UD) composites with 50–55% fibre volume fraction were produced using a solvent-free continuous wet powder impregnation method. The composites exhibit ductile failure behaviour with a strain-to-failure of more than 10% albeit using a very brittle matrix. Improvements at a model composite level were translated into higher mechanical properties of UD hierarchical composites. The Young’s moduli of rayon fibre-reinforced (NFC-reinforced) PHB composites were about 15 GPa. The tensile and flexural strength of hierarchical PHB composites increased by 15% and 33% as compared to the rayon fibre-reinforced neat PHB composites. This suggests that incorporation of NFC into the PHB matrix binds the rayon fibres, which does affect the load transfer between the constituents resulting in composites with better mechanical properties.  相似文献   

19.
This experimental study is concerned with the influence of metallic (Ti) and ceramic (SiC) reinforcements in an aluminumfsilicon (AlSi) alloy, when regarding tensile properties and wear behavior. Several micron sized particulate reinforced composites were produced by hot-pressing technique: AlSi–SiC and AlSi–Ti composites and AlSi-(Ti–SiC) hybrid composites.Regarding tensile properties, all composites presented higher ultimate tensile strength (UTS) than the AlSi matrix, with the highest UTS being attained by a hybrid composite (AlSi-11.25%Ti–5%SiC).Regarding wear behavior, reciprocating pin-on-plate wear tests were performed for unreinforced AlSi; AlSi–Ti composites and AlSi-(Ti–SiC) hybrid composite against a gray cast iron (GCI) counterface. The wear mechanisms for all the tested tribopairs are presented and discussed. It was observed that the wear behavior of the AlSi–Ti/GCI and also AlSi-(Ti–SiC)/GCI tribopairs are improved when compared with the AlSi/GCI system. AlSi-11.25%Ti-5%SiC hybrid composite exhibited the highest improvement in wear rate.  相似文献   

20.
In thermally bonded bi-component fibre nonwovens, a significant contribution is made by bond points in defining their mechanical behaviour formed as a result of their manufacture. Bond points are composite regions with a sheath material reinforced by a network of fibres’ cores. These composite regions are connected by bi-component fibres — a discontinuous domain of the material. Microstructural and mechanical characterization of this material was carried out with experimental and numerical modelling techniques. Two numerical modelling strategies were implemented: (i) traditional finite element (FE) and (ii) a new parametric discrete phase FE model to elucidate the mechanical behaviour and underlying mechanisms involved in deformation of these materials. In FE models the studied nonwoven material was treated as an assembly of two regions having distinct microstructure and mechanical properties: fibre matrix and bond points. The former is composed of randomly oriented core/sheath fibres acting as load-transfer link between composite bond points. Randomness of material’s microstructure was introduced in terms of orientation distribution function (ODF). The ODF was obtained by analysing the data acquired with scanning electron microscopy (SEM) and X-ray micro computed tomography (CT). Bond points were treated as a deformable two-phase composite. An in-house algorithm was used to calculate anisotropic material properties of composite bond points based on properties of constituent fibres and manufacturing parameters such as the planar density, core/sheath ratio and fibre diameter. Individual fibres connecting the composite bond points were modelled in the discrete phase model directly according to their orientation distribution. The developed models were validated by comparing numerical results with experimental tensile test data, demonstrating that the proposed approach is highly suitable for prediction of complex deformation mechanisms, mechanical performance and structure-properties relationships of composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号