首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目前很少见到波形钢腹板变高度布置对波形钢腹板箱梁抗扭性能影响的研究成果。采用Midas FEA建立三维有限元模型,进行波形钢腹板变波高布置对波形钢腹板箱梁抗扭性能的影响研究,并结合伊朗某高速公路上的BR-06L/R特大桥对研究成果进一步验证。研究结果表明:保证波形钢腹板箱梁恒载不变的情况下,仅仅在小范围内增大波形钢腹板的波高同时降低厚度,可以很大程度的提升波形钢腹板箱梁的抗扭性能;针对目前波形钢腹板箱梁桥均设计为波形钢腹板等波高布置的现状,提出了波形钢腹板变波高布置的设想,通过实桥数值分析,将抗扭能力较弱的截面在小范围内增大波形钢腹板的波高同时降低厚度,可以使该截面的抗扭能力有显著提升。  相似文献   

2.
以某波形钢腹板组合箱梁桥为工程背景,建立三维有限元模型,以结构形式、墩高、墩高差以及波形钢腹板的厚度布置方式为变量,研究了这些变量对波形钢腹板组合箱梁桥抗扭性能的影响。研究结果表明扭转正应力的最大值主要出现在跨中截面附近,在桥墩截面附近也有较大的扭转正应力;波形钢腹板连续刚构桥的桥墩不高时,抗扭性能接近于波形钢腹板连续梁桥;波形钢腹板连续刚构桥的抗扭性能与墩高、墩高差成反比;波形钢腹板变厚度布置相比于采用最大厚度等厚度布置可以有效保证桥梁抗扭性能的同时减小桥梁运营过程中的挠度,另外还可以节省钢材。  相似文献   

3.
针对影响波形钢腹板组合箱梁畸变及扭转性能的因素进行有限元分析,着重研究了组合箱梁各构件几何参数、横隔板设置、断面形状变化及箱室布置等关键因素的影响,分析结果表明,上述因素对组合箱梁变形效应均有较大影响,并在此基础上提出了改善组合箱梁畸变及扭转性能的相应工程措施。研究结果表明:对于波形钢腹板组合箱梁,组合箱梁高度及波纹板平板宽度的增大对其抗扭性能不利,相应增大波纹板折叠角度及腹板倾斜角度能够有效的增强箱梁抗扭及畸变性能,同时设置合理数目的横隔板对增强波形钢腹板组合箱梁抗扭及畸变能力极为有利。  相似文献   

4.
为了研究波形钢腹板的数量对波形钢腹板组合箱梁抗扭性能的影响,首先以波形钢腹板的数量为唯一变量,依据《公路波形钢腹板预应力混凝土箱梁桥设计规范》(DB41/T 643-2010)建立波形钢腹板组合箱梁桥对比模型,对箱梁的抗扭性能进行理论分析,然后以卫河大桥为工程背景,建立实桥模型,对比研究实桥结构单箱单室箱梁与单箱三室箱梁的抗扭性能。理论模型分析中,随着波形钢腹板数量的增加,波形钢腹板组合箱梁的扭转正应力和扭转挠度均有一定程度的下降;实桥的扭转分析显示,偏心汽车荷载作用下,波形钢腹板连续箱梁桥的扭转正应力下降约25%,而扭转挠度下降不太明显。综合以上分析,增加波形钢腹板的数量可以在一定程度上提高波形钢腹板组合箱梁的抗扭性能。  相似文献   

5.
通过查阅文献,分别对波形钢腹板箱梁抗扭的理论和试验、结构参数对波形钢腹板箱梁抗扭性能的影响以及波形钢腹板箱梁的极限抗扭承载力的发展状况做出归纳研究。通过归纳研究结果,指出了目前波形钢腹板箱梁抗扭性能研究的缺失之处,为今后波形钢腹板箱梁的抗扭性能研究指明了方向。  相似文献   

6.
波形钢腹板PC组合箱梁抗扭性能试验与有限元分析   总被引:1,自引:0,他引:1  
进行了波形钢腹板PC组合箱梁约束扭转试验,并利用ABAQUS软件进行有限元模拟,对影响抗扭刚度的相关参数进行了分析.结果表明:高跨比较大时,横隔板对抗扭刚度的影响较大;波形钢腹板的倾斜角较小时,波形钢腹板的倾斜设置对抗扭刚度的影响较小;当波形钢腹板倾斜角的正切值大于1/5时,抗扭刚度的提高幅度大于10%.  相似文献   

7.
《四川建筑》2021,41(1)
为了研究结构参数对波形钢腹板钢-混组合箱梁振动特性的影响,文章以某波形钢腹板组合简支梁为工程背景,利用ANSYS有限元软件建立了波形钢腹板钢-混组合箱梁的三维模型,采用理论公式对有限元模型的正确性进行了验证,随后,分析了波形钢腹板的类型、钢底板的厚度以及波形钢腹板的厚度对波形钢腹板钢-混组合箱梁振动特性的影响。研究结果表明:波形钢腹板的类型对波形钢腹板钢-混组合箱梁振动频率的影响较小,可以忽略不计,波形钢腹板钢-混组合箱梁振动频率随波形钢腹板的厚度和钢底板的厚度的增加而增大,该研究为波形钢腹板钢-混组合箱梁的合理设计和振动频率的计算提供有利的参考依据。  相似文献   

8.
对一种新型波形钢腹板组合箱梁桥结构开展了动力特性及抗震性能分析;以鄄城黄河大桥跨中箱梁段为例,建立组合箱梁桥的多尺度有限元模型,并与实测值进行了对比,验证了多尺度模型的有效性;基于此设计了该新型波形钢腹板组合箱梁的截面参数,采用多尺度建模方法研究了各参数变化对箱梁动力特性的影响规律,通过地震反应谱法分析了该结构在各向地震作用下的结构响应。结果表明:箱梁横隔板的数量和厚度是结构动力特性的敏感参数,对结构的扭转刚度影响很大;增大波形钢腹板厚度可有效提高结构刚度,且刚度增大对频率的影响程度大于质量增大对频率的影响,建议腹板厚度宜设为20~30 mm;槽形钢板可有效提高截面的抗弯刚度,尤其对结构竖向弯曲模态影响较大;横向地震作用对混凝土顶板和横隔板应力的影响最大,纵向地震力对波形钢腹板应力的影响最大,竖向地震力对混凝土底板和槽形钢板的应力影响较大。  相似文献   

9.
文中以主跨185m的波形钢腹板连续刚构桥为工程背景,研究横隔板对桥梁受力的影响。结果表明,采用合适的横隔板的布置方式,可以增大箱梁抗扭刚度,减小翘曲应力和底板横向正应力。  相似文献   

10.
《钢结构》2018,(11)
为了探讨腹板开圆孔处设置加劲肋对梁柱节点及钢框架的抗震性能的影响,运用有限元软件ABAQUS对该类型节点进行关键参数的影响分析,并对不同节点形式的钢框架进行抗震性能对比研究。考虑的参数包括腹板开圆孔的直径D、圆孔中心距离柱翼缘表面的距离l、圆孔处加劲肋的厚度t及加劲肋的宽度b,共设计了4个系列16个节点模型,并进行循环荷载作用下的受力性能对比分析。结果表明,腹板开孔处设置加劲肋可以显著减小梁柱节点的塑性应变,并减小梁截面的屈曲变形,增大腹板开圆孔型节点的承载力;梁柱节点的承载力随着参数D的增大有所下降,随参数b或t的增大逐渐增大,参数l的影响很小;梁翼缘焊缝处的Mises等效应力水平随参数D的增大有所下降,随参数l或b或t的增大而有所增大;建议参数取值D=0. 80hbw,l=(0. 80~1. 00) hbw,b=0. 50bf,t=0. 50tw,其中hbw、bf、和tw分别为梁腹板高度、梁翼缘宽度及梁腹板厚度;改变节点形式对钢框架整体的滞回性能影响很小,相对传统节点及腹板开圆孔型节点而言,腹板开孔处设置加劲肋可以明显降低钢框架的Mises应力水平,且可以更好地保护梁柱节点域。  相似文献   

11.
以波形钢腹板-钢管混凝土桁式弦杆组合梁为研究对象,开展抗扭性能试验和理论分析,并与波形钢腹板-钢管桁式弦杆组合梁和波形钢腹板-钢管混凝土弦杆组合箱梁抗扭性能进行对比;研究波形钢腹板-钢管混凝土桁式弦杆组合梁的扭曲破坏形态、截面类型、管内混凝土对组合梁抗扭性能的影响,并探讨波形钢腹板-钢管混凝土桁式弦杆组合梁抗扭承载能力计算方法。结果表明,波形钢腹板-钢管混凝土桁式弦杆组合梁可等效为闭口箱形截面。扭曲破坏形态为混凝土桥面板沿与梁轴线呈45°方向斜向开裂,且纵向钢筋发生屈服。管内混凝土对组合梁抗扭刚度和抗扭承载能力具有一定的贡献度。基于线性刚度叠加方法,提出钢管混凝土组合抗扭刚度计算方法。根据波形钢腹板-钢管混凝土桁式弦杆组合梁可能发生的四种扭曲破坏形态,提出波形钢腹板-钢管混凝土桁式弦杆组合梁抗扭承载能力计算方法,并将采用该文所提出的组合梁抗扭承载能力计算方法得到的理论计算结果与试验和有限元分析结果进行对比,误差不超过8.5%。  相似文献   

12.
通过对剪切作用下的闭口斜加劲钢板剪力墙进行有限元弹性屈曲分析,研究了肋板刚度比和抗扭抗弯刚度比对斜向槽钢加劲钢板剪力墙剪切屈曲性能及其加劲门槛刚度的影响。通过有限元分析,得到了斜向加劲钢板剪力墙临界剪切屈曲应力随内填板跨高比和加劲肋抗扭抗弯刚度比变化的关系曲线。考虑加劲肋对内填板加劲边转动约束,提出了第二门槛刚度,并给出了具有良好精度的斜向槽钢加劲钢板剪力墙的门槛刚度及第二门槛刚度计算公式。研究结果表明,受压型加劲肋对加劲板的临界剪切屈曲应力提高明显,随肋板刚度比的增大,加劲板的剪切屈曲应力增大,而受拉型加劲肋对板的屈曲荷载提高有限;当肋板刚度比达到第二门槛刚度时,加劲肋可以完全约束加劲边的面外位移和转动。当提高加劲肋的抗扭抗弯刚度比时,能够有效降低加劲肋的门槛刚度,因此,建议加劲肋的抗扭抗弯刚度比不低于0.307。  相似文献   

13.
通过对剪切作用下的闭口斜加劲钢板剪力墙进行有限元弹性屈曲分析,研究了肋板刚度比和抗扭抗弯刚度比对斜向槽钢加劲钢板剪力墙剪切屈曲性能及其加劲门槛刚度的影响。通过有限元分析,得到了斜向加劲钢板剪力墙临界剪切屈曲应力随内填板跨高比和加劲肋抗扭抗弯刚度比变化的关系曲线。考虑加劲肋对内填板加劲边转动约束,提出了第二门槛刚度,并给出了具有良好精度的斜向槽钢加劲钢板剪力墙的门槛刚度及第二门槛刚度计算公式。研究结果表明,受压型加劲肋对加劲板的临界剪切屈曲应力提高明显,随肋板刚度比的增大,加劲板的剪切屈曲应力增大,而受拉型加劲肋对板的屈曲荷载提高有限;当肋板刚度比达到第二门槛刚度时,加劲肋可以完全约束加劲边的面外位移和转动。当提高加劲肋的抗扭抗弯刚度比时,能够有效降低加劲肋的门槛刚度,因此,建议加劲肋的抗扭抗弯刚度比不低于0.307。  相似文献   

14.
韦灼彬  高屹  王铁成 《钢结构》2006,21(4):27-30
基于临时应急和长期使用相结合的特殊需要,提出了带型钢加劲肋的钢板-混凝土组合板这一新型组合板,型钢加劲肋分别采用工字钢、矩形钢管和由工字钢剖分而成的T形钢三种形式。以加劲肋形式、组合板厚度和栓钉布置为参数,进行了9块组合板的力学性能试验。结果表明,通过适当地选择型钢加劲肋形式、合理地布置栓钉和确定混凝土厚度,可以保证钢承板和混凝土组合作用的发挥。  相似文献   

15.
张东升  付建新 《江苏建筑》2012,(4):18-19,39
文章介绍了波形钢腹板PC组合箱梁的结构特点,国内外对波形钢腹板PC组合箱梁性能的研究,包括:抗弯性能,抗剪性能,剪滞效应,预应力导入效率,徐变的影响,疲劳,扭转。最后建议波形钢腹板PC组合箱梁需进一步研究的内容。  相似文献   

16.
在变截面箱梁的悬臂施工过程中,当采用常规的挂篮施工工艺时,挂篮的模板会影响箱梁横隔板的施工,因此需要考虑横隔板滞后施工或者悬臂阶段暂不施工。文章依托裕溪河大桥波形钢腹板连续箱梁桥,建立组合箱梁实体有限元模型,分析悬臂施工过程中,研究横隔板数量对箱梁整体抗扭性能的影响,为今后同类型桥梁的施工建造提供参考。  相似文献   

17.
高耗能钢板剪力墙,其竖向设置梯形波形钢板作为剪力墙的腹板,在主要承载水平力的同时可以承载竖向荷载,两侧边缘构件为矩形钢管混凝土柱,波形板沿高度设置水平加劲肋。利用有限元软件ABAQUS对其进行推覆及滞回性能研究。研究结果表明加劲波形钢板剪力墙具有较大的抗侧弹性刚度,优良的延性性能、抗侧力性能和滞回性能。分析加劲肋刚度及数量、波形钢板屈服强度及厚度等不同参数的影响规律,为波形钢板剪力墙提供设计依据。  相似文献   

18.
余少乐  杨应华 《钢结构》2012,27(11):34-37,47
双漏斗矩形钢煤斗的受力性能比较复杂,可以通过增加厚度或者改变加劲肋形式等方式改善钢煤斗受力性能。通过一个工程实例,采用数值分析方法,研究壁厚增加和增大加劲肋的截面尺寸对双漏斗矩形钢煤斗受力性能的影响。研究表明,最大Mises应力并不随着厚度的增大而一直减小,增加加劲肋的截面高度对异型钢煤斗的受力性能的改善效果比增加加劲肋截面宽度的效果更加明显。  相似文献   

19.
在波形钢腹板组合箱梁中,剪力主要由波形钢腹板承担。由于波形钢腹板的抗剪刚度比混凝土腹板有较大程度的降低,波形钢腹板会产生较大的竖向剪切变形。为此,基于能量变分法建立了考虑腹板剪切变形的波形钢腹板组合箱梁剪力滞效应分析方法。通过试验对该理论分析方法进行验证,并基于该理论分析方法研究波形钢腹板剪切变形对剪力滞效应的影响。同时,基于该分析方法提出了采用影响线最不利加载方式进行相关规范中规定的汽车荷载作用下的波形钢腹板组合箱梁桥剪力滞效应分析。结果表明:考虑腹板剪切变形的分析方法与试验结果吻合度良好;波形钢腹板的剪切变形有利于减轻三跨连续梁正弯矩区的剪力滞效应,即考虑腹板剪切变形后翼缘有效宽度系数值更接近于1。  相似文献   

20.
方管剪力键与H形钢肋的连接构造是组合空腹夹层板中一种新的构件连接形式。为研究方管剪力键与H形钢肋连接区域的受力性能,制作两个足尺剪力键试件开展对比试验研究,在试验基础上进一步做了有限元模拟分析。试验表明:在方管剪力键侧壁设置加劲板,能使整个剪力键受力具有明显的弹塑性受力特点;加劲板能明显缓解构件连接区域的应力集中现象,且加劲板对构件抗侧刚度具有较大的贡献。数值分析进一步表明,加劲板的宽度和厚度均对整个剪力键应力分布和抗侧刚度具有显著的影响,而改变宽度,影响效果更为显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号