首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. We examined various type-selective phosphodiesterase (PDE) inhibitors on glucose-induced insulin secretion from rat isolated islets, on islet PDE activity and on islet cyclic AMP accumulation in order to assess the relationship between type-selective PDE inhibition and modification of insulin release. 2. The non-selective PDE inhibitor, 3-isobutyl-1-methylxanthine (IBMX, 10(-5)-10(-3) M), as well as the type III selective PDE inhibitors SK&F 94836 (10(-5)-10(-3) M), Org 9935 (10(-7)-10(-4) M), SK&F 94120 (10(-5)-10(-4) M) and ICI 118233 (10(-6)-10(-4) M) each caused concentration-dependent augmentation (up to 40% increase) of insulin release in the presence of a stimulatory glucose concentration (10 mM), but not in the presence of 3 mM glucose. 3. Neither the type IV PDE inhibitor rolipram (10(-4) M) nor the type I and type V PDE inhibitor, zaprinast (10(-4)-10(-3) M) modified glucose-induced insulin release when incubated with islets, although a higher concentration of rolipram (10(-3) M) inhibited secretion by 55%. However, when islets were preincubated with these drugs followed by incubation in their continued presence, zaprinast (10(-6)-10(-4) M) produced a concentration-dependent inhibition (up to 45% at 10(-4) M). Under these conditions, rolipram inhibited insulin secretion at a lower concentration (10(-4) M) than when simply incubated with islets. 4. A combination of SK&F 94836 (10(-5) M) and forskolin (5 x 10(-8) M) significantly augmented glucose-induced insulin secretion (30% increase), although neither drug alone, in these concentrations, produced any significant effect. 5. Islet cyclic AMP levels, which were not modified by forskolin (10-6 M), SK&F 94836 (10-4 M) or Org 9935 (10-5 M) were significantly elevated (approximately 3.7 fold increase) by forskolin inc ombination with either SK&F 94836 or Org 9935.6 Homogenates of rat islets showed a low Km (1.7 microM) and high Km (13 microM) cyclic AMP PDE in the supernatant fractions (from 48,000 g centrifugation), whereas the particulate fraction showed only a low Km (1.4 microM) cyclic AMP PDE activity.7. The PDE activity of both supernatant and pellet fractions were consistently inhibited by SK&F94836 or Org 9935, the concentrations required to reduce particulate PDE activity by 50% being 5.5 and 0.05 microM respectively.8 Rolipram (10-5 10-4 M) did not consistently inhibit PDE activity in homogenates of rat islets and zaprinast (10-4 M) consistently inhibited activity by 30% in the supernatant fraction, but not consistently in the pellet.9 These data are consistent with the presence of a type III PDE in rat islets of Langerhans.  相似文献   

2.
1. Rat cultured aortic vascular smooth muscle cells (VSMC) express both cyclic GMP-inhibited cyclic AMP phosphodiesterase (PDE3) and Ro 20-1724-inhibited cyclic AMP phosphodiesterase (PDE4) activities. By utilizing either cilostamide, a PDE3-selective inhibitor, or Ro 20-1724, a PDE4-selective inhibitor, PDE3 and PDE4 activities were shown to account for 15% and 55% of total VSMC cyclic AMP phosphodiesterase (PDE) activity. 2. Treatment of VSMC with either forskolin or 8-bromo-cyclic AMP caused significant concentration- and time-dependent increases in total cellular cyclic AMP PDE activity. Using cilostamide or Ro 20-1724, we demonstrated that both PDE3 and PDE4 activities were increased following forskolin or 8-bromo-cyclic AMP treatment, with a relatively larger effect observed on PDE3 activity. The increase in cyclic AMP PDE activity induced by forskolin or 8-bromo-cyclic AMP was inhibited by actinomycin D or cycloheximide, demonstrating that new mRNA synthesis and protein synthesis were required. An analogue of forskolin which does not activate adenylyl cyclase (1,9-dideoxyforskolin) or an analogue of cyclic GMP (8-bromo-cyclic GMP) did not affect total cyclic AMP PDE activity. 3. Incubation of VSMC with 8-bromo-cyclic AMP for 16 h caused a marked rightward shift in the concentration-response curves for both isoprenaline- and forskolin-mediated activation of adenylyl cyclase. A role for up-regulated cyclic AMP PDE activity in this reduced potency is supported by our observation that cyclic AMP PDE inhibitors (IBMX, cilostamide or Ro 20-1724) partially normalized the effects of isoprenaline or forskolin in treated cells to those in untreated cells. 4. We conclude that VSMC cyclic AMP PDE activity is increased following long-term elevation of cyclic AMP and that increases in PDE3 and PDE4 activities account for more than 70% of this effect. Furthermore, we conclude that increases in cyclic AMP PDE activity contribute to the reduced potency of isoprenaline or forskolin in treated VSMC. These results have implications for long-term use of cyclic AMP PDE inhibitors as therapeutic agents.  相似文献   

3.
One of the characteristics of obesity-associated diabetes is an elevated fasting plasma insulin concentration with a weak insulin secretory response to subsequent glucose stimulation. Evidence suggests that hyperglycemia and hyperlipidemia may contribute to the initiation and progression of this disordered islet glucose sensing. It has been proposed that reducing hyperglycemia and hyperlipidemia per se may improve islet glucose sensing. Here we studied glucose-dependent insulin release in islets isolated from ob/ob mice treated with dopamine agonists (bromocriptine and SKF38393, BC/SKF) which significantly reduced circulating glucose and lipid levels of ob/ob mice. Islets from BC/SKF-treated mice showed a marked decrease of the elevated basal insulin release to levels similar to lean mice. Such treatment also induced a higher secretory response to glucose stimulation compared with that in ob/ob mice with sustained hyperglycemia and hyperlipidemia. Similarly, when islets from untreated ob/ob mice were cultured for 7 days in 11 mM glucose in the absence of free fatty acid, the basal insulin release was significantly decreased and high glucose stimulated insulin release increased compared with that from islets cultured in medium containing 30 mM glucose and 2 mM oleate. The BC/SKF-induced reduction of elevated basal insulin release was associated with decreased hexokinase activity and basal cyclic AMP content in islet tissue. Our results demonstrate that dopamine agonist treatment improves basal insulin release in ob/ob mice and this effect may be mediated, in part, by a reduction of hyperglycemia and hyperlipidemia.  相似文献   

4.
1. The cytochrome P450 (CYP) mixed-function oxidase system is widely distributed in body tissues and plays a key role in the metabolism of endogenous and exogenous compounds. Little attention has been paid to the expression of the system in the islets of Langerhans. The current study has examined the expression and potential role of the CYP1A family within the islets of Langerhans of control and 3-methylcholanthrene (3-MC)-induced Wistar rats. 2. CYP1A expression within pancreatic slices and islets from 3-MC-induced and control rats demonstrated that CYP1A-like protein levels were induced by 3-MC pretreatment (25 mg kg-1 day-1; i.p. for 3 days). 3. Effects of 3-MC-induction on beta-cell secretory responsiveness were investigated by use of rat collagenase-isolated islets. Insulin release from control islets incubated with 3 mM glucose (basal) was 1.4 +/- 0.2 ng/islet h-1 (mean +/- s.e.mean, n = 7). Incubation with 16.7 mM glucose, 25 mM KCl, 100 microM arachidonic acid, or 100 microM carbachol caused a 4.4, 7.0, 4.0 and 4.2 fold, respectively, increase in insulin release (P < 0.001). Forskolin (2 microM), or phorbol 12-myristic 13-acetate (10 nM) potentiated glucose-stimulated insulin release 1.2 and 1.6 fold (P < 0.01) whereas adenalin (1 microM) caused a 76% inhibition (P < 0.01). 4. Islets from 3-MC pretreated animals displayed similar responsiveness to all agents tested except arachidonic acid, carbachol and forskolin. Insulin release in response to arachidonic acid and carbachol was enhanced 5.2 and 5.0 fold, respectively, by 3-MC pretreatment (P < 0.001 compared to control islets incubated with 3 mM glucose); the effect of forskolin on insulin output was significantly decreased (20%; P < 0.01) compared to control islets. 5. 3-MC pretreatment did not cause any significant differences in food intake, plasma glucose or total islet insulin content. Incubation of islets with 3-MC in vitro (1 microM - 10 mM) did not affect basal or glucose-stimulated insulin release. 6. These data suggest that CYP1A-like protein expression within the pancreatic islets of Langerhans is inducible and may have a role in the alteration of pancreatic beta-cell secretory responsiveness.  相似文献   

5.
We studied the synergistic effect of glucose and prolactin (PRL) on insulin secretion and GLUT2 expression in cultured neonatal rat islets. After 7 days in culture, basal insulin secretion (2.8 mM glucose) was similar in control and PRL-treated islets (1.84 +/- 0.06% and 2.08 +/- 0.07% of the islet insulin content, respectively). At 5.6 and 22 mM glucose, insulin secretion was significantly higher in PRL-treated than in control islets, achieving 1.38 +/- 0.15% and 3.09 +/- 0.21% of the islet insulin content in control and 2.43 +/- 0.16% and 4.31 +/- 0.24% of the islet insulin content in PRL-treated islets, respectively. The expression of the glucose transporter GLUT2 in B-cell membranes was dose-dependently increased by exposure of the islet to increasing glucose concentrations. This effect was potentiated in islets cultured for 7 days in the presence of 2 micrograms/ml PRL. At 5.6 and 10 mM glucose, the increase in GLUT2 expression in PRL-treated islets was 75% and 150% higher than that registered in the respective control. The data presented here indicate that insulin secretion, induced by different concentrations of glucose, correlates well with the expression of the B-cell-specific glucose transporter GLUT2 in pancreatic islets.  相似文献   

6.
Human pancreatic beta-cell proliferation may be crucial for the success of islet transplantation. The aim of this study was to test the hypothesis that adult human beta-cells proliferate in vitro and in vivo and respond with increased rates of replication to factors known to promote rodent islet-cell proliferation, i.e. glucose, human recombinant GH, and FCS. For this purpose, human islets were prepared from a total of 19 adult heart-beating organ donors and cultured for 48 h with or without the additives described above. 3H-thymidine was added to the medium during the last 60 min of culture. After immunohistochemical staining for insulin and autoradiography, the labeling index (LI; i.e. % of labeled beta-cells over total number of beta-cells) was estimated by light microscopy. Islets also were transplanted under the kidney capsule of normal or alloxan-diabetic nude mice. After 2 weeks, 3H-thymidine was injected and the islet grafts prepared for determination of LI, as described above. Islets cultured at 5.6 mM glucose showed an increased beta-cell proliferation compared with islets cultured at 2.8 mM glucose (P < 0.05). However, culture at 11 mM glucose failed to further increase beta-cell proliferation. Addition of GH (1 microg/ml) to the medium, in the presence of 1% FCS and 5.6 mM glucose, did not influence the rate of beta-cell proliferation. In islets transplanted to hyperglycemic nude mice, beta-cell proliferation was similar to that observed in islets grafted into normoglycemic nude mice. Proliferation, however, decreased with increasing organ donor age. This study shows that pancreatic beta-cells from adult man are able to proliferate both in vitro and in vivo. Moreover, beta-cells from adult human donors respond with increased proliferation to glucose in vitro and show a decreased proliferation in vivo with increasing donor age.  相似文献   

7.
8.
Long term feeding of a sucrose rich diet to rats is accompanied by a decreased glucose assimilation rate, despite high plasma insulin levels. Hyperinsulinism is at least partially based on a relative obesity, with increased amounts of abdominal- and retroperitoneal fat tissue, but unchanged total body weight compared to starch fed controls. The secretory pattern of insulin release was studied following glucose, arginine, fructose and sulfonylurea administration in the isolated perfused pancreas of sucrose and isocaloric starch fed rats. In addition, isolated islets of Langerhans were used to demonstrate the effects of glucose on insulin secretion and the incorporation of H-3 leucine into the proinsulin and insulin fraction of islet proteins. Following 11 mM glucose, the dynamics of insulin release in the isolated perfused pancreas of sucrose fed rats is characterized by a markedly elevated, late plateau-like response, usually seen only at higher glucose concentrations. Hyperinsulinism, as compared to starch fed controls, can also be demonstrated following arginine and the sulfonylurea HB-419, whereas fructose has no effect in the presence of low glucose concentrations. During incubation of the pancreatic islets, the hyperinsulinism in sucrose-, compared to starch fed rats, is more pronounced at 11 mM glucose than at 5.5 mM glucose. The incorporation of H-3 leucine into the proinsulin-insulin fraction of islet proteins in sucrose compared to starch fed rats, however, is significantly greater with glucose 5.5 mM than at high glucose level. In sucrose fed rats, secretion and biosynthesis of insulin thus appear to be elevated but closely linked only at physiological glucose concentration.  相似文献   

9.
In this experiment, various conditions for embedding cultures of human pancreatic islets in type I collagen gel were studied in an attempt to maintain the highly differentiated functions of islet cells and particularly insulin secretion over a long period of time. The islets isolated by a collagenase digestion technique were plated either on or within the collagen gel and refed with either Eagle's minimum essential medium (5.5 mM D-glucose) or RPMI 1640 medium (11 mM D-glucose) supplemented with 10% FCS and antibiotics. The comparison between the two culture media showed that embedded islets cultured in RPMI had a higher basal insulin secretion rate, survived longer than their MEM counterparts, but exhibited impaired response to an acute glucose test contrasting thus with islets cultured in MEM. The secretory behaviour of islets was also related to the different morphological modifications occurring during culture. Islets directly embedded within the collagen gel more or less maintained their spherical structure and highest secretory capacities. When overlaid with a second layer of collagen, well established monolayers of human islet cells grown on collagen underwent a gradual and complete reorganization into a three-dimensional islet-like structure with a striking reinforcement of their secretory activity. Both cultures were able to survive more than 8 weeks, thus proving the usefulness of such a new model for long-term culture. In contrast, standard cultures on culture treated plastic dishes on which islets cells rapidly established wide monolayers, exhibited a rapid and definitive decline in insulin secretion with a survival not exceeding 14 days. In the light of these different culture conditions, possible mechanisms responsible for disturbance of hormonal release and their implications for in-vitro study of isolated islets functions are discussed. In conclusion, this work is a new example of the permissive effects of collagen matrices on the establishment or maintenance of tissue-like structures in vitro, suggesting the definition of a new model for the study of human pancreatic islets in long-term culture.  相似文献   

10.
The activities of the mitochondrial FAD-linked glycerophosphate dehydrogenase (m-GDH), glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, glutamate-pyruvate transaminase (GPT) and glutamate-oxaloacetate transaminase were measured in islet and liver homogenates from fetal, neonatal, adult male, adult female, pregnant and lactating rats. Either parallel or dissociated ontogenic changes were observed in islet and liver homogenates. The activity of islet m-GDH was slightly, albeit not significantly, lower in neonates than in adult rats, comparable in male and female adult animals, unaffected by pregnancy, and increased during lactation. It was much higher in fetal or adult islets cultured for 7 days than in freshly isolated islets from adult rats. In cultured islets from adult rats, the increase in m-GDH activity coincided with a dramatic decrease of GPT activity, a situation the mirror image of that found in several animal models of non-insulin-dependent diabetes mellitus. The intrinsic properties of m-GDH, as judged by comparison of measurements made by either a radioisotopic or a colorimetric procedure, were not identical in islet and liver homogenates and differed between fetal and adult islets, suggesting the existence of distinct iso-enzymes. These findings illustrate adaptive changes of islet enzymes, with exclusive or partial mitochondrial location, in ontogenic situations characterized by a remodelling of fuel homeostasis.  相似文献   

11.
Prostaglandin E2 levels in isolated rat islets were increased from 64 +/- 11 pg/30 islets when incubated in medium containing 2 mM glucose to 115 +/- 9 pg/30 islets in medium containing 20 mM glucose. In contrast, glyceraldehyde (10 mM) reduced prostaglandin E2 levels to 29 +/- 6 pg/30 islets. Inhibition of glucose metabolism by mannoheptulose (10 mM) abolished the stimulatory effect of glucose on prostaglandin E2 levels and inhibited glucose-induced insulin release. The cyclooxygenase inhibitor, flurbiprofen (20 microM), did not affect insulin release caused by glucose or glyceraldehyde. In the presence of 1 mg/ml bovine serum albumin, insulin secretion induced by 20 mM glucose (6.9 +/- 1.1% of islet insulin content) was reduced by the lipoxygenase inhibitor BW755 C (20 microM) to 3.1 +/- 0.6%, and by the phospholipase A2 inhibitor, p-bromophenacyl bromide (10 microM), to 2.1 +/- 0.8%. In the absence of bovine serum albumin the inhibitory action of BW755 C and p-bromophenacyl bromide on glucose-induced insulin release was significantly more pronounced. These drugs whether in the presence or absence of bovine serum albumin, did not affect glyceraldehyde-stimulated insulin secretion. Glyceraldehyde (10 mM), potentiated glucose-induced insulin release in the presence of 2-8 mM glucose, but not for 10-20 mM glucose. Although the phospholipase A2 activator, melittin, initiated insulin release in the presence of 2 mM glucose and enhanced 10 mM glyceraldehyde-stimulated insulin secretion it had no effect on 20 mM glucose-induced insulin release. These two stimulatory effects of melittin on insulin release were totally abolished by p-bromophenacyl bromide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Leptin receptors are expressed in pancreatic beta-cells. However, leptin's role in islet hormone secretion is essentially unknown. In the present study, we aimed to elucidate leptin's effect on isolated pancreatic NMRI mouse islets by examining islet amyloid polypeptide (IAPP) and insulin secretion in acute experiments and after 48-hr exposure to leptin (1-100 nM). It was also examined whether a putative effect of leptin was affected by the glucose concentration. Islets were cultured in medium RPMI 1640 + 10% fetal calf serum, and the effects of leptin on islet cell replication, glucose metabolism, and hormone content were subsequently examined. Glucose-stimulated IAPP secretion was reduced both acutely and after 48-hr exposure to leptin, whereas only minor effects were found on insulin release, i.e. an inhibition in islets cultured with 1 nM leptin. An acute inhibitory effect by 10 nM leptin was observed on the ratio of IAPP/insulin release at 5.6-11.1 mM glucose, but this was overcome by 16.7 mM glucose. The islet glucose oxidation rate was enhanced by 1 nM leptin, but decreased at higher concentrations of leptin in acute experiments. In contrast, glucose metabolism was not affected in long-term experiments. Moreover, leptin did not influence islet (pro)insulin synthesis or the cell replication rate after culture. In conclusion, we show that islet IAPP release seems to be more sensitive to leptin than is insulin release. The effect of leptin on islet hormone secretion is dependent on the glucose concentration. The regulation of hormone secretion seems to be dissociated from glucose metabolism, an effect previously described in islets after exposure to certain cytokines. Our data necessarily suggest that a previously proposed negative feedback loop between leptin and insulin can be counteracted by IAPP.  相似文献   

13.
Glucose-6-phosphatase (G6Pase) activity and the rate of glucose cycling are increased in islets from animal models of Type II (non-insulin-dependent) diabetes mellitus. Glucocorticoid treatment further stimulates these processes and inhibits glucose-induced insulin release. To determine whether these effects result from a direct action of glucocorticoids on the beta-cells, we used isolated islets. The islets were from transgenic mice overexpressing the glucocorticoid receptor in their beta-cells to increase the cells' sensitivity to glucocorticoid. Islets from transgenic and non-transgenic control mice utilized and oxidized the same amount of glucose. In contrast, islet G6Pase activity was 70 % higher, glucose cycling was increased threefold and insulin release was 30 % lower in islets from transgenic mice. Hepatic G6Pase activity was the same in transgenic and control mice. Dexamethasone administration increased G6Pase activity and glucose cycling and decreased insulin release in both transgenic and control mouse islets. We conclude that glucocorticoids stimulate islet G6Pase activity and glucose cycling by acting directly on the beta-cell. That activity may be linked to the inhibition of insulin release.  相似文献   

14.
Pancreatic islets were cultured for 24 h in the presence of 1 mM glucose, which renders islets incapable of responding to glucose with insulin release. These islets were compared to islets maintained at 20 mM glucose for 24 h. Detritiation of [2-3H]glucose and [5-3H]glucose in 1 mM glucose islets was normal, suggesting that glucose transport and phosphorylation and all enzymes of glycolysis were not down-regulated in the incapacitated islets. 14CO2 formation from [U-14C]glucose and [6-14C]glucose was inhibited up to 80% and 14CO2 from methyl succinate was inhibited up to 60%, indicating that down-regulation at (a) mitochondrial site(s) might explain the incapacitated insulin release. 14CO2 formation from [3,4-14C]glucose (which becomes [1-14C]pyruvate) was decreased, indicating that the reaction catalyzed by pyruvate dehydrogenase was down-regulated. This decrease, however, was not as large as the decreases in 14CO2 formation from [U-14C]glucose, [2-14C]glucose (which becomes [2-14C]pyruvate), or [6-14C]glucose (which becomes [3-14C]pyruvate), indicating that other reactions were also down-regulated. 14CO2 formation from [1-14C]glucose was inhibited less than that from [6-14C]glucose in the incapacitated islets (34 vs 54%) and these rates indicated that flux of glucose through the pentose phosphate pathway was increased in the incapacitated islet, such that 29% (0.4 nmol of 1.4 glucose/100 islets/90 min) was metabolized via this pathway in the incapacitated islet but only 3.4% (0.1 of 2.9 nmol glucose/100 islets/90 min) was metabolized via the pentose pathway in the 20 mM glucose islets. With rates of 14CO2 evolved from glucose labeled at C2 and C6 and from methyl succinate labeled at C1 + C4 and C2 + C3 the 14CO2 ratio formula was used to calculate the ratios of carboxylated and decarboxylated pyruvate. Roughly equal amounts of pyruvate entered the citric acid cycle by each route in islets maintained for 24 h at 1, 5, or 20 mM glucose. The results indicate that decarboxylation and carboxylation of pyruvate were about equally suppressed in incapacitated islets and that direct inhibition of reactions of the cycle was unlikely. This is consistent with evidence which indicates that down-regulation of both pyruvate carboxylase and pyruvate dehydrogenase occurs in incapacitated islets, i.e., under long-term conditions that modify amounts of enzymes (MacDonald et al., 1991, J. Biol. Chem. 266, 22392-22397).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Recently, we reported successful transplantation (Tx) of microencapsulated (mc) islets. However, graft failure observed in several cases was associated with an increased foreign body reaction compared to long-term functioning grafts. This study was performed to investigate the impact of an immunoalterating islet pretreatment (12-14 days culture at 22 degrees C) on graft function. After microencapsulation in barium alginate beads the islets were cultured for another day. Diabetic LEWIS rats (blood glucose >19 mM) were transplanted with 3500 immunoaltered mc-Wistar islets intraperitoneally. Controls were transplanted with 3500 non-cultured syngeneic or allogeneic mc-islets. Additional syngeneic and allogeneic controls were transplanted with 6000 non-cultured, non-encapsulated islets intraperitoneally. Seventy percent of the recipients of microencapsulated, long-term low temperature cultured islets maintained normoglycemia at least for 15 weeks, while this was true in only 17% of those animals receiving microencapsulated non-pretreated allogeneic islets. Islets in non-encapsulated controls were rejected within several days. Graft function correlated with histologically proven viable islets within the capsules. Microencapsulation of islets markedly prolonged allograft survival compared to non-encapsulated islets; application of an immunoaltering low-temperature culture further improved graft function significantly. These data may support the hypothesis of induction of a reaction against microcapsules by the antigen release from the graft which may be avoided by immunoaltering islet pretreatment.  相似文献   

16.
Two voltage-dependent calcium channels (VDCCs) have been reported in pancreatic islets: the beta-cell/endocrine-brain and cardiac subtypes. The cardiac-type alpha 1 subunit was isolated from cultured beta TC3 cells, a murine pancreatic beta-cell line, by immunoprecipitation with a specific polyclonal antibody. We have examined the effects of 1-isobutyl-3-methylxanthine (IBMX) and forskolin, agonists that elevate cAMP in these cells, on the phosphorylation of this subunit in intact beta TC3 cells using a sensitive back-phosphorylation technique. This technique allows quantitative detection of protein phosphorylation that is specifically stimulated by cAMP. The stimulation of intact beta TC3 cells with forskolin or IBMX resulted in the phosphorylation of the cardiac-type alpha 1 subunit as evidenced by a 40-60% decrease in the ability of the 257-kDa form to serve as a substrate in the in vitro back-phosphorylation reaction with [gamma-32P]ATP and the catalytic subunit of cAMP-dependent protein kinase (PKA). The effects of forskolin were time- and concentration-dependent. The concentration-dependency of forskolin-induced phosphorylation of the cardiac-type alpha 1 subunit and the potentiation of glucose-induced insulin secretion were highly correlated, a finding that is consistent with a role for such phosphorylation in mediating at least some of the effects of cAMP on secretion.  相似文献   

17.
18.
The pentaacetate esters of selected hexoses were recently found to stimulate insulin release. The kinetics of their hydrolysis was now investigated in both rat pancreatic islet homogenates and intact islets. In islet homogenates, the hydrolysis of alpha-d-glucose pentaacetate, as judged from the measurement of acetate production, displayed a pH optimum of 7.4 and a Km for the ester of 0.95 mM. At pH 7.4, the reaction velocity was about 5 times higher than the rate of alpha-d-glucose pentaacetate hydrolysis by intact islets, as judged from the ester-induced increase in the acetate content of both the islet and surrounding incubation medium. Comparable results were obtained in intact islets exposed to either beta-l-glucose pentaacetate or beta-d-galactose pentaacetate. The ester content of the islets after 120 min incubation was close to 0.1 nmol/islet, yielding an apparent intracellular concentration at least one order of magnitude higher than the extracellular concentration (1.7 mM). These findings indicate that hexose esters that either stimulate insulin release or fail to do so are equally well taken up and hydrolyzed by islet cells. They are compatible, therefore, with the view that the insulinotropic action of some of these esters may be favored by the catabolism of their hexose moiety, although some other mechanisms for stimulation of insulin release must be operative in the case of beta-l-glucose pentaacetate.  相似文献   

19.
In PC12 cells, forskolin as well as the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) increased intracellular adenosine-3',5'-cyclic monophosphate (cyclic AMP) levels, which peaked at 45-60 minutes and declined thereafter. Maximum levels were 3000 and 1700 pmol/10(6) cells during treatment with 10 microM forskolin or 0.1 microM NECA, respectively. Extracellular cyclic AMP rose with time, at mean rates of 24.7 (forskolin) and 11.3 (NECA) pmol/min/10(6) cells. With either drug, a linear correlation was obtained between the calculated time integral of intracellular cyclic AMP and the measured extracellular cyclic AMP levels, indicating that the outflow of cyclic AMP was sustained by a nonsaturated transport system. The ability of forskolin to increase intracellular and extracellular cyclic AMP levels was hindered in a concentration-dependent manner by 8-(p-sulfophenyl)theophylline (8-SPT). A similar inhibition was exerted by other two adenosine receptor antagonists, 8-cyclopentyl-1,3-dipropylxanthine and 3,7-dimethyl-1-propargylxanthine. The concentration-response curve to adenosine was shifted to the right by 25 microM 8-SPT, whereas that of forskolin was shifted downwards. Adenosine deaminase (ADA, EC 3.5.44, 1 U/mL) reduced the intracellular cyclic AMP response to forskolin by 68%, whereas the adenosine transport inhibitor, dipyridamole (10 microM), significantly increased 1 and 10 microM forskolin-dependent cyclic AMP accumulation. Erythro-9-(2-hydroxy-3-nonyl)adenine (10 microM), an inhibitor of ADA, and alpha,beta-methyleneadenosine 5'-diphosphate (100 microM), an inhibitor of ecto-5'-nucleotidase, did not alter forskolin activity. These results demonstrate that a cyclic AMP extrusion system operates in PC12 cells during adenylyl cyclase stimulation by forskolin and that this stimulation involves a synergistic interaction with endogenous adenosine. However, extruded cyclic AMP does not appear to significantly contribute to the formation of the endogenous adenosine pool.  相似文献   

20.
Glucokinase (GK) is the glucose sensor in the adult beta-cell, resulting in fuel for insulin synthesis and secretion. Defects in this enzyme in the beta-cell are responsible for the genetic disorder maturity-onset diabetes of the young, with the beta-cell being unable to secrete insulin appropriately when challenged with glucose. The human fetal beta-cell is also unable to secrete insulin when exposed to glucose, but whether GK is present and functional in this developing cell is unknown. To determine the expression of GK in human fetal pancreatic tissue, cytosolic protein was extracted from human fetal islet-like cell clusters (ICCs) at 17-19 weeks gestation and examined for protein content and enzyme activity. On Western blots, a single band corresponding to GK was seen at 52 kDa, and this was similar to that obtained from human adult islets. The maximal velocity (Vmax) of GK was less in fetal ICCs than that in adult islets (8.7 vs. 20.7 nmol/mg protein x h); similar K(m) values were found in both ICCs and islets. No attempt was made to determine which cells in an ICC contained GK. Glucose utilization was determined radiometrically; the Vmax of the high K(m) component was less in ICCs than in islets (31.3 pmol/ICC x h vs. 101.4 pmol/islet.h). Culture of ICCs for 3-7 days in medium containing 11.2 mmol/L glucose resulted in a 3.7-fold increase in the Vmax of GK and a 1.8-fold increase in glucose utilization. These enhanced activities of glucose phosphorylation and glycolysis, however, did not lead to the beta-cell being able to secrete insulin when exposed to glucose. In conclusion, glucokinase is present and functional in human fetal ICCs, but the inability of the human fetal beta-cell to secrete insulin in response to an acute glucose challenge is not due to immaturity of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号