首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
膨胀波纹管抗外挤强度的影响因素分析   总被引:1,自引:0,他引:1  
为了找出影响膨胀波纹管抗外挤强度的影响因素,通过ABAQUS有限元软件对波纹管的抗外挤强度进行模拟,研究了波纹管的不圆度、波纹管的壁厚、井筒直径等对波纹管抗外挤强度的影响。结果表明,不圆度和壁厚对膨胀后波纹管抗外挤强度的影响较大,随着波纹管不圆度的减小,波纹管的抗外挤强度迅速的增大,壁厚越大波纹管的抗外挤强度也越大;另外,增大波纹管应用的井筒直径可以有效的提高波纹管的膨胀性能,降低波纹管膨胀后的不圆度,但是大尺寸的井筒直径降低了波纹管膨胀后的抗外挤强度。  相似文献   

2.
油井堵漏可膨胀波纹管的有限元分析   总被引:1,自引:0,他引:1  
可膨胀波纹管技术具有膨胀工艺简单,作业周期短等优点。应用ANSYS仿真分析了波纹管的成型工艺,模拟了波纹管的水力膨胀作业,对波纹管膨胀过程中的应力、位移和圆度进行了分析;最后计算了波纹管的抗内、外压强度。分析结果表明,成型后波纹管的残余应力最大为258.02 MPa,位于波谷区域。波纹管外径比加工前减小了24.2 mm,适应于Ф244.5 mm井眼。根据强度分析,波纹管抗内压强度为33 MPa;根据结构失稳分析,波纹管抗外挤强度为4.5 MPa。  相似文献   

3.
目前,通过降低膨胀波纹管Bauschinger效应和膨胀后残余应力等方法对提高波纹管外挤强度的作用有限。为了提高膨胀波纹管的力学性能,借鉴双层组合套管的设计方法,提出了双层组合波纹管设计的新方法。通过对双层膨胀波纹管的力学性能分析和管材优选研究,将215.9mm双层波纹管的抗外挤强度提高至23.8 MPa,扩大了膨胀波纹管的技术应用范围。  相似文献   

4.
可膨胀波纹管堵漏技术应用   总被引:1,自引:0,他引:1  
波纹管技术主要用于封隔复杂井段,处理井漏、井涌、水侵或坍塌等事故,可保证复杂地区深井钻井的顺利进行。利用有限元方法分析了可膨胀波纹管不同壁厚力学特征,并进行了现场实例计算。结果表明:波纹管壁厚增加,所需胀形压力也增加,波纹管最大应变也增加;波纹管应力随压力增长,由于波纹管三段相互影响,应力出现波动;波纹管应变经历了增加、稳定继续增加、稳定的阶段;压力达到一定程度后,波纹管的应变稳定下来,这个阶段尽管压力增加,变形也不增加,若继续增加压力,则波纹管可能破裂失效。  相似文献   

5.
在对阀门用金属波纹管有限元结构分析的基础上,比较了Ω形和U形金属波纹管承载和变形补偿能力.研究表明,对几何参数相同的Ω形和U形金属波纹管,Ω形金属波纹管承受内压的能力大于U形金属波纹管,而U形金属波纹管承受轴向力的能力则大于Ω形金属波纹管.在相等的轴向力作用下,Ω形金属波纹管轴向补偿量较大,但在各自最大轴向载荷作用下,U形金属波纹管能达到的轴向补偿量更大.  相似文献   

6.
油气井井漏井壁与波纹管接触应力分析   总被引:1,自引:1,他引:0  
基于钻井过程中的波纹管堵漏技术,采用有限元分析方法对与井壁接触情况下的堵漏波纹管膨胀过程进行了研究。模拟了井眼中波纹管的膨胀变形,得到了波纹管施工加压膨胀和井壁接触过程中的等效应力分布云图、波纹管的位移、应力变化规律,以及波纹管膨胀后和井壁的接触状况。波纹管加压膨胀变形过程中,其应力、应变对应于管体几何形状呈对称分布,管体各处的等效应力和应变不同。波纹管并非在全周长上与井壁发生接触,部分弧段没有接触压力。膨胀内压增加时,接触区域扩大,接触压力有明显升高。井壁只在波纹管与其最先接触点,以及随后接触的波峰顶点处会出现较高的Mises应力。该方法为油气井钻井过程中出现的井漏波纹管堵漏施工时膨胀内压的确定提供了依据。  相似文献   

7.
广泛用于LNG等输送的高真空多层绝热(HV-MLI)低温管道常使用波纹管膨胀节来补偿其内管的冷缩变形,波纹管由于工作在深冷环境中且要承受液体内压,在实际使用过程中常出现断裂进而导致整个管道失效。为此,介绍了HV-MLI低温管道的基本结构,建立了波纹管有限元模型,在HV-MLI低温管道输送LNG、LO_2及LN_2的不同工况下对波纹管进行了应力非线性有限元计算,分析了轴向位移载荷及内压载荷分别作用下的波纹管响应状况,并结合国家标准GB/T 12777—2008对所用波纹管进行了强度及疲劳寿命校核。结果表明:(1)波纹管满足HV-MLI低温管道使用要求;(2)输送LN_2工况时波纹管等效应力最大,波纹管波峰内表面为危险点,此时可以考虑适当降低介质输送压力;(3)轴向位移载荷引起的波纹管子午向应力远超过材料的屈服极限,是引起波纹管疲劳损坏的主要因素,在管道设计及使用时应严格控制其数值。  相似文献   

8.
油气井堵漏波纹管加压膨胀过程中位移-应力变化规律   总被引:2,自引:0,他引:2  
石凯  李巍  周勇  刘彦明 《石油学报》2006,27(6):137-140
基于油气井钻井中的波纹管堵漏技术,采用ANSYS软件有限元分析方法和现场试验,对堵漏波纹管膨胀过程中位移-应力变化规律进行了研究。采用双重非线性分析方法计算波纹管的膨胀变形,得到了波纹管施工加压膨胀过程中的等效应力分布云图以及波纹管膨胀过程中的位移、应力变化规律。现场波纹管加压试验结果表明,波纹管加压膨胀变形过程的模拟计算结果与试验结果有着同构的一致性。波纹管加压膨胀变形过程中,其应力、应变对应于管体几何形状呈对称分布。管体各处的等效应力和应变不同,其大小主要取决于该处的曲率半径,在波峰和波谷区域产生最大等效应力和最大应变。在此基础上回归出了波纹管管径几何尺寸变化与胀圆所需压力值之间的数学关系式。  相似文献   

9.
可膨胀波纹管截面设计是波纹管结构设计的关键环节,直接影响波纹管的应用效果。目前波纹管截面的设计方法过度依赖经验,计算效率和精度不高。为此,提出一种多瓣可膨胀波纹管截面设计计算方法。新方法在基本假设的基础上简化了几何模型,系统阐述了计算方法和步骤,同时提出以椭圆度为主要判断依据的计算评估方法,结合有限元仿真分析获得了优化波纹管截面结构的一般规律。分析结果表明:6瓣结构的波纹管的截面经膨胀后最容易还原为圆形;波纹管的波峰和波谷半径比越接近于1,膨胀后的椭圆度越低;多瓣波纹管的波峰处是残余应力集中的危险区域。与基于图形的试算方法相比,新方法的设计效率更高,计算结果的稳定性更强。  相似文献   

10.
分别以不同规格的波纹管为模型,应用FLUENT软件对湍流流动状态下波纹管内的传热进行模拟,分析了流体流动状态和波纹管几何结构参数对传热系数的影响。结果表明,波纹管的壁面平均传热系数随着入口雷诺数的增加而增大;与光滑管相比,在低雷诺数的情况下,波纹管传热强化效率随雷诺数的增大而增大,而随着雷诺数的进一步提高,波纹管的强化传热效果逐步减弱;当波纹管的外径与内径的比值在1.25~1.40时,其传热强化效果最好。  相似文献   

11.
建立了U形无加强波纹管结构分析的有限元分析模型,采用ANSYS有限元软件对其在不同平面失稳工况下的应力响应进行了计算。结果表明,U形无加强波纹管平面失稳与否主要取决于波纹管环板表面塑性区的产生与扩展,同时证明了采用单层结构模拟多层波纹管进行平面失稳研究的可行性。  相似文献   

12.
修宝清  唐顺利 《石化技术》1997,4(4):234-236,243
运用统计学的方法对影响膨胀节疲劳寿命的因素进行了分析和研究,证实了EJM标准对多层膨胀节的应力计算,对非轴向位移的当量化处理以及对压力应力的影响系数方法都是恰当的。热处理对疲劳寿命无显著影响。指出了单波和多波膨胀节采用一个疲劳寿命预测公式是恰当的。  相似文献   

13.
从基本理论出发,研究了U型波纹管在内压作用下的应力;总结了波纹管的扭转刚度并给出了剪应力分布公式及曲线;研究了波纹管的两种失稳情况,最后从结构有限元的角度出发,总结出了几种基本力学关系,为今后进一步研究波纹管的力学性能提供了很好的理论平台。  相似文献   

14.
在实际应用中 ,由于波纹管经常会受到各种因素的作用而发生振动 ,因此有必要对波纹管做动态特性研究。实验研究了物理参数相同的波纹管在 4种不同情况下的动态特性 ,分别识别出它们的轴向和横向模态参数。给波纹管加上加强环后 ,轴向和横向阻尼比均增加 ,而固有频率均降低 ,动态刚度则与层与层之间是否有阻尼材料有关 ;无阻尼材料时 ,动态刚度增加 ;有阻尼材料时 ,动态刚度降低。在实际应用中 ,可根据实际需要来选取合适的波纹管。  相似文献   

15.
波纹管补贴套管工艺及应用   总被引:1,自引:0,他引:1  
波纹管补贴套管工艺在美国5000余口油井上应用,成功率较高;在我国克拉玛依油田井下作业中运用收到了一定的效果。木文分别介绍了水力胶筒式胀贴和水力机械式胀贴两种波纹管补贴方法,分析了补贴成功率不高的原因并提出对策建议。  相似文献   

16.
膨胀波纹管胀管器结构设计与试验   总被引:2,自引:2,他引:0  
膨胀工具的结构直接影响波纹管的机械膨胀过程。设计了φ241.3 mm滚轮胀管器和球形胀管器。滚轮胀管器主要由壳体、底堵打捞短节和3组滚轮系统构成,其胀管单元的结构与运动状态设计必须保证在有效胀开波纹管管体的前提下,以胀管所需的钻压或扭矩最小为目标;球形胀管器的作用是将水力膨胀后的波纹管主体修正到要求的形状和尺寸,主要由球形胀管器接头、巴掌、球形滚轮和锁紧轴组成。对设计的2种胀管器进行了强度校核和现场试验验证,结果表明,2种胀管器工作正常,结构强度和轴承系统的性能满足使用要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号