首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Robinia pseudo-acacia L. (black locust) is a nonindigenous species currently invading the central part of Japanese grasslands. Several allelochemicals were identified and characterized from the leaf tissue. The growth of both radicle and hypocotyl in the tested species (barnyard grass, white clover, lettuce, and Chinese cabbage) was reduced when grown in soil mixed with the leaves of R. pseudo-acacia at various concentrations. Aqueous leaf extracts, when bioassayed, exhibited a significant suppression of radicle growth. Chromatographic separation of an ethanolic extract of R. pseudo-acacia leaves resulted in isolation of three compounds, identified as robinetin (1), myricetin (2), and quercetin (3) by nuclear magnetic resonance and mass spectroscopy. All inhibited root and shoot growth of lettuce. Robinetin, found in a large amount, caused 50% suppression of the root and shoot growth of lettuce at 100 ppm. The presence of these bioactive substances in leaf tissue suggests a potential role for flavonoids in R. pseudo-acacia invasion in introduced habitats.  相似文献   

2.
Ethanolic extract of aerial parts of Artemisia annua L. and artemisinin were evaluated as anti-insect products. In a feeding deterrence assay on Epilachna paenulata Germ (Coleoptera: Coccinellidae) larvae, complete feeding rejection was observed at an extract concentration of 1.5 mg/cm2 on pumpkin leaf tissue. The same concentration produced a feeding inhibition of 87% in Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae). In a no-choice assay, both species ate less and gained less weight when fed on leaves treated with the extract. Complete mortality in E. paenulata and 50% mortality in S. eridania were observed with extract at 1.5 mg/cm2. Artemisinin exhibited a moderate antifeedant effect on E. paenulata and S. eridania at 0.03–0.375 mg/cm2. However, a strong effect on survival and body weight was observed when E. paenulata larvae were forced to feed on leaves treated at 0.03 and 0.075 mg/cm2. Artemisia annua ethanolic extract of aerial parts at 1.5 mg/cm2 showed no phytotoxic effect on pumpkin seedlings.  相似文献   

3.
Goldenseal (Hydrastis canadensis L.) is a popular medicinal plant distributed widely in North America. The rhizome, rootlets, and root hairs produce medicinally active alkaloids. Berberine, one of the Hydrastis alkaloids, has shown antifungal activity. The influence of a combination of the major Hydrastis alkaloids on the plant rhizosphere fungal ecology has not been investigated. A bioassay was developed to study the effect of goldenseal isoquinoline alkaloids on three Fusarium isolates, including the two species isolated from Hydrastis rhizosphere. The findings suggest that the Hydrastis root extract influences macroconidia germination, but that only the combined alkaloids—berberine, canadine, and hydrastine—appear to synergistically stimulate production of the mycotoxin zearalenone in the Fusarium oxysporum isolate. The Hydrastis root rhizosphere effect provided a selective advantage to the Fusarium isolates closely associated with the root tissue in comparison with the Fusarium isolate that had never been exposed to Hydrastis.  相似文献   

4.
Hinoki-asunaro (Thujopsis dolabrata Sieb. et Zucc. var. hondai Makino) is a tree endemic in Japan whose seeds produce several terpenoids. We hypothesized that antifungal compounds in seeds might select for fungi on the root surfaces of T. dolabrata var. hondai seedlings. We examined seed and soil fungi, their sensitivity to methanol extracts of the seeds, the fungi on root surfaces of seedlings grown in Kanuma pumice (a model mineral soil) and nursery soil, and the frequency at which each fungus was detected on the seedling root surface. We calculated correlation coefficients between fungal detection frequency on root surfaces and fungal sensitivity to seed extracts. We also isolated from the seeds the antifungal compound totarol that selected for fungi on root surfaces. Species of Alternaria, Cladosporium, Pestalotiopsis, and Phomopsis were the most frequently isolated fungi from seeds. Mortierella and Mucor were the dominant fungi isolated from Kanuma pumice, whereas Umbelopsis and Trichoderma were the main fungi isolated from nursery soil. Alternaria, Cladosporium, Mortierella, Pestalotiopsis, and Phomopsis were the dominant fungi isolated from root surfaces of seedlings grown in Kanuma pumice, and Alternaria, Cladosporium, Pestalotiopsis, Phomopsis, and Trichoderma were the main root-surface fungi isolated from seedlings grown in nursery soil. The fungal detection frequencies on root surfaces in both soils were significantly and negatively correlated with fungal sensitivity to the seed extract. A similar correlation was found between the fungal detection frequency on root surfaces and fungal sensitivity to totarol. We conclude that totarol is one factor that selects for fungi on root surfaces of T. dolabrata var. hondai in the early growth stage.  相似文献   

5.
Securidaca longepedunculata Fers (Polygalaceae) is commonly used as a traditional medicine in many parts of Africa as well as against a number of invertebrate pests, including insects infesting stored grain. The present study showed that S. longepedunculata root powder, its methanol extract, and the main volatile component, methyl salicylate, exhibit repellent and toxic properties to Sitophilus zeamais adults. Adult S. zeamais that were given a choice between untreated maize and maize treated with root powder, extract, or synthetic methyl salicylate in a four-way choice olfactometer significantly preferred the control maize. Methyl salicylate vapor also had a dose-dependant fumigant effect against S. zeamais, Rhyzopertha dominica, and Prostephanus truncates, with a LD100 achieved with a 60 l dose in a 1-l container against all three insect species after 24 hr of exposure. Probit analyses estimated LD50 values between 34 and 36 l (95% CI) for all insect species. Furthermore, prolonged exposure for 6 days showed that lower amounts (30 l) of methyl salicylate vapor were able to induce 100% adult mortality of the three insect species. The implications are discussed in the context of improving stored product pest control by small-scale subsistence farmers in Africa.  相似文献   

6.
Spiraea thunbergii Sieb. contains 1-O-cis-cinnamoyl--d-glucopyranose (CG) and 6-O-(4-hydroxy-2-methylene-butyroyl)-1-O-cis-cinnamoyl--d-glucopyranose (BCG) as major plant growth inhibiting constituents. In the present study, we determined the inhibitory activity of CG and BCG on root elongation of germinated seedlings of lettuce (Lactuca sativa), pigweed (Amaranthus retroflexus), red clover (Trifolium pratense), timothy (Phleum pratense), and bok choy (Brassica rapa var chinensis) in comparison with that of two well-known growth inhibitors, 2,4-dichlorophenoxyacetic acid (2,4-D) and (+)-2-cis-4-trans-abscisic acid (cis-ABA), as well as two related chemicals of CG and BCG, cis-cinnamic acid (cis-CA) and trans-cinnamic acid (trans-CA). The EC50 values for CG and BCG on lettuce were roughly one-half to one-quarter of the value for cis-ABA. cis-Cinnamic acid, which is a component of CG and BCG, possessed almost the same inhibitory activity of CG and BCG, suggesting that the essential chemical structure responsible for the inhibitory activity of CG and BCG is cis-CA. The cis-stereochemistry of the methylene moiety is apparently needed for high inhibitory activity, as trans-CA had an EC50 value roughly 100 times that of CG, BCG, and cis-CA. Growth inhibition by CG, BCG, and cis-CA was influenced by the nature of the soil in the growing medium: alluvial soil preserved the bioactivity, whereas volcanic ash and calcareous soils inhibited bioactivity. These findings indicate a potential role of cis-CA and its glucosides as allelochemicals for use as plant growth regulators in agricultural fields.  相似文献   

7.
Invasive plants are by definition excellent competitors, either indirectly through competition for resources or directly through allelopathic inhibition of neighboring plants. Although both forms of competition are commonly studied, attempts to explore the interactions between direct and indirect competition are rare. We monitored the effects of several doses of extracts of Alliaria petiolata, a Eurasian invader in North America, on the growth of Impatiens pallida, a North American native, at several planting densities. The density-dependent phytotoxicity model predicts that as plant density increases, individual plant size will decrease, unless a toxin is present in the soil. In this case, individual plant size is predicted to increase as plant density increases, as plants share a limited toxin dose. We tested this model using fractions of an A. petiolata extract enriched in flavonoids or glucosinolates, as well as a combined fraction. The flavonoid-enriched fraction and the combined fraction suppressed I. pallida growth but only when applied at a dose eight times higher than that expected in the field. When treated with a dose equivalent to estimated field exposure levels, I. pallida growth was not distinguishable from that of control plants that received no extract, showing that indirect competition for resources was more important for determining the growth of I. pallida than direct allelopathic inhibition by A. petiolata. This is an important reminder that, even though many plants have the demonstrated potential to exert strong allelopathic effects, those effects may not always be apparent when other forms of competition are considered as well.  相似文献   

8.
Our objective was to identify the sex pheromone of Lymantria bantaizana (Lepidoptera: Lymantriidae) whose larvae feed exclusively on walnut, Juglans spp., in China, and Japan. Coupled gas chromatographic–electroantennographic detection (GC-EAD) analyses of pheromone gland extracts revealed a single EAD-active component. Retention index calculations of this compound on four GC columns suggested that it was a methyl-branched octadecadiene with conjugated double bonds. In GC-EAD analyses of 2-methyloctadecenes, (Z)-2-methyl-7-octadecene and (E)-2-methyl-7-octadecene elicited the strongest antennal responses, suggesting that the double bond positions were at C7 and C9. In comparative GC-EAD analyses of pheromone gland extract and stereoselectively synthesized isomers (E,E; E,Z; Z,E; Z,Z) of 2-methyl-7,9-octadecadiene, the (E,Z)- and (Z,E)-isomer had retention times identical to that of the candidate pheromone, but only the latter isomer elicited strong EAD activity. Results of field experiments in Japan substantiated that (7Z,9E)-2-methyl-7,9-octadecadiene is the L. bantaizana sex pheromone, a compound previously unknown in the Lepidoptera. Detection surveys in North America for exotic Eurasian forest defoliators could include traps baited with the L. bantaizana pheromone.  相似文献   

9.
Observational studies on foliage avoidance by the polyphagous thrips species Frankliniella occidentalis (Pergande) and Heliothrips haemorrhoidalis (Bouché) (Thysanoptera: Thripidae) identified six non-host species (Allagopappus dichotomus (Asteraceae), Gardenia posoquerioides (Rubiaceae), Plectranthus aff. barbatus, Plectranthus strigosus, Plectranthus zuluensis (Lamiaceae), and Sclerochiton harveyanus (Acanthaceae) among plants growing within a major glasshouse botanical collection. The effects of sequentially obtained acetone and aqueous methanol leaf extracts on mortality in first instar Frankliniella occidentalis were assessed. The acetone leaf extract of Sclerochiton harveyanus, which had the highest activity against the thrips, yielded four new iridoids, sclerochitonosides A–C, and sclerochitonoside B 4′-methyl ether. Mortality of F. occidentalis was increased on exposure to all four iridoids, and the most active iridoid was sclerochitonoside A (8-epiloganic acid 4′-hydroxyphenylethyl ester). Choice experiments demonstrated that this compound did not significantly deter H. haemorrhoidalis from treated leaf surfaces. The significance of iridoids in the defense mechanism of plants against thrips is discussed.  相似文献   

10.
Rabdosin B, an ent-kaurene diterpenoid purified from the air-dried aerial parts of Isodon japonica (Burm.f) Hara var. galaucocalyx (maxin) Hara, showed a biphasic, dose-dependent effect on root growth and a strong inhibitory effect on root hair development in lettuce seedlings (Lactuca sativa L.). Lower concentrations of rabdosin B (20–80 μM) significantly promoted root growth, but its higher levels at 120–200 μM, by contrast, had inhibitory effects. Additionally, all tested concentrations (10–40 μM) inhibited root hair development of seedlings in a dose-dependent manner. Further investigations on the underlying mechanism revealed that the promotion effect of rabdosin B at the lower concentrations resulted from increasing the cell length in the mature region and enhancing the mitotic activity of meristematic cells in seedlings’ root tips. In contrast, rabdosin B at higher concentrations inhibited root growth by affecting both cell length in the mature region and division of meristematic cells. Comet assay and cell cycle analysis demonstrated that the decrease of mitotic activity of root meristematic cells was due to DNA damage induced cell cycle retardation of the G2 phase and S phase at different times.  相似文献   

11.
Water extract from Nelumbo nucifera was tested for possible functional cosmetic agent. Whitening effect was measured by tyrosinase inhibition assay and DOPA-oxidase inhibition assay, and anti-wrinkle effect was checked by elastase inhibition assay. DOPA-oxidase inhibition effect (whitening effect) of Nelumbo nucifera’s leaf, seed and flower extract was 59%, 57% and 50%, respectively. Nelumbo nucifera’s leaf, seed and flower extract showed 56%, 49%, and 54% elastase inhibition (anti-wrinkle effect) at 200 μg/ml, while adenosine indicated 26% inhibition. Water cream including Nelumbo nucifera’s root, leaf, flower, stem extract did not cause significant skin irritation. Water cream including 4% Nelumbo nucifera extract was stable for 30 days under various temperature conditions. From the study, Nelumbo nucifera’s leaf, flower and seed extracts showed strong possibility for whitening and anti-wrinkle functional cosmetic agent.  相似文献   

12.
The effects of limonene, a mixture of limonene + carvone (1:1, v/v), and methyl jasmonate (MeJA) on diamondback moth (DBM) (Plutella xylostella L.) oviposition, larval feeding, and the behavior of its larval parasitoid Cotesia plutellae (Kurdjumov) with cabbage (Brassica oleracea L. ssp. capitata, cvs. Rinda and Lennox) and broccoli (B. oleracea subsp. Italica cv Lucky) were tested. Limonene showed no deterrent effect on DBM when plants were sprayed with or exposed to limonene, although there was a cultivar difference. A mixture of limonene and carvone released from vermiculite showed a significant repellent effect, reducing the number of eggs laid on the cabbages. MeJA treatment reduced the relative growth rate (RGR) of larvae on cv Lennox leaves. In Y-tube olfactometer tests, C. plutellae preferred the odors of limonene and MeJA to filtered air. In cv Lennox, the parasitoid preferred DBM-damaged plants with limonene to such plants without limonene. C. plutellae females were repelled by the mixture of limonene + carvone. In both cultivars, exogenous MeJA induced the emission of the sesquiterpene (E,E)-α-farnesene, the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and green leaf volatile (Z)-3-hexenyl acetate + octanal. The attractive effect of limonene and MeJA predicts that these two compounds can be used in sustainable plant protection strategies in organic farming.  相似文献   

13.
The effect of heartwood extracts from Acacia mangium (heartrot-susceptible) and A. auriculiformis (heartrot-resistant) was examined on the growth of wood rotting fungi with in vitro assays. A. auriculiformis heartwood extracts had higher antifungal activity than A. mangium. The compounds 3,4,7,8-tetrahydroxyflavanone and teracacidin (the most abundant flavonoids in both species) showed antifungal activity. A. auriculiformis contained higher levels of these flavonoids (3.5- and 43-fold higher, respectively) than A. mangium. This suggests that higher levels of these compounds may contribute to heartrot resistance. Furthermore, both flavonoids had strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and laccase inhibition. This suggests that the antifungal mechanism of these compounds may involve inhibition of fungal growth by quenching of free radicals produced by the extracellular fungal enzyme laccase.  相似文献   

14.
The seeds of two Apiaceae species, Ligusticum hultenii and Lomatium californicum, were investigated. Preliminary bioassays indicated that methylene chloride extracts of seeds of both species contained selective phytotoxic activity against monocots and antifungal activity against Colletotrichum fragariae. Active constituents were isolated by bioassay-guided fractionation, and the structures were elucidated by NMR and GC-MS as apiol and Z-ligustilide, isolated from L. hultenii and L. californicum, respectively. Apiol and Z-ligustilide had I50 values of about 80 and 600 μM, respectively, for inhibition of the growth of Lemna paucicostata. The methylene chloride (CH2Cl2) extracts of the seeds and the isolated and purified compounds were tested against the 2-methylisoborneol-producing cyanobacterium (blue-green alga) Oscillatoria perornata, and the green alga Selenastrum capricornutum. The CH2Cl2 extracts of both Apiaceae species and apiol were weakly toxic to both species of phytoplankton, while Z-ligustilide was toxic to both with a lowest complete inhibitory concentration (LCIC) of 53 μM. Seeds of L. californicum and L. hultenii were found to be rich sources of Z-ligustilide (97 mg/g of dry seed) and apiol (40 mg/g of dry seed), respectively.  相似文献   

15.
Ageratum conyzoides L. weed often invades cultivated fields and reduces crop productivity in Southeast Asia and South China. However, intercropping this weed in citrus orchards may increase the population of predatory mite Amblyseius newsami, an effective natural enemy of citrus red mite Panonychus citri, and keep the population of P. citri at low and noninjurious levels. This study showed that A. conyzoides produced and released volatile allelochemicals into the air in the intercropped citrus orchard, and these volatiles influenced the olfactory responses of A. newsami and P. citri. At test temperature (25°C), A. conyzoides fresh leaves, its essential oil, and major constituents, demethoxy-ageratochromene, β-caryophyllene, α-bisabolene, and E-β-farnesene, attracted A. newsami and slightly repelled P. citri. Field experiments demonstrated that spraying A. conyzoides essential oil emulsion in an A. conyzoides nonintercropped citrus orchard increased the population density of A. newsami from below 0.1 to over 0.3 individuals per leaf, reaching the same level as in an A. conyzoides intercropped citrus orchard. However, this effect could not be maintained beyond 48 hr because of the volatility of the essential oil. In contrast, in the A. conyzoides intercropped citrus orchard, A. conyzoides plants continuously produced and released volatile allelochemicals and maintained the A. newsami population for a long time. The results suggest that intercropping of A. conyzoides not only made the citrus orchard ecosystem more favorable for the predatory mite A. newsami, but also that the volatile allelochemicals released from A. conyzoides regulated the population of A. newsami and P. citri.  相似文献   

16.
Linden (Tilia cordata) bark was shown to contain an antifeedant effective against the large pine weevil, Hylobius abietis. Soxhlet extraction of inner and outer bark resulted in an extract that showed antifeedant activity in a microfeeding assay. The extract was fractionated by chromatography on silica gel using gradient elution with solvents of increasing polarity. The content of the fractions obtained was monitored by thin layer- and gas chromatography. Fractions of similar chemical composition were merged. Two of the 17 fractions showed antifeedant activity in the microfeeding assay. Nonanoic acid was identified in both of these fractions. Subsequent testing in the microfeeding assay showed that nonanoic acid possessed strong antifeedant activity against H. abietis adults.  相似文献   

17.
A new biosurfactant producer, Bacillus coagulans, was isolated from soil. Its 24-h-old culture broth had a low surface tension (27–29 mN/m). Optimization of cell growth of this bacterium led to maximal biosurfactant production with glucose or starch as the organic carbon source, a pH in the range 4.0–7.5, and incubation temperatures from 20 to 45°C. The crude biosurfactants obtained after neutralization and lyophilization of the acid precipitate yielded a minimal aqueous solution surface tension value of 29 mN/m and an interfacial tension value of 4.5 mN/m against hexadecane. The critical micelle concentration of the crude biosurfactants was 17 mg/L. Addition of NaCl to the aqueous solution of the crude product caused lowering of surface tension at both the aqueous solution-air and aqueous solution-n-hexadecane interfaces. These results indicate that the biosurfactants obtained have potential environmental and industrial applications and may have uses in microbially enhanced oil recovery.  相似文献   

18.
The Tilemsi phosphate rock (TPR) of Mali is a good and cheaper alternative to imported phosphate fertilizers. Many soil microorganisms can also mobilize sparingly soluble inorganic phosphates, and several have a good potential to improve plant growth. With the aim of improving the response of wheat cultivated in Mali to fertilization with TPR, in this work we describe the isolation and selection from four different Malian soils of TPR-solubilizing microorganisms (TSM) with high P-mobilization activities. When the rhizosphere of three wheat cultivars (Alkama Beri, Hindi Tossom and Tetra) was used to isolate TSM, only bacterial isolates were selected. TPR-solubilizing fungi were only obtained by soil enrichment in liquid medium containing TPR as sole P source. In the rhizosphere a significant correlation was observed between the total microbial population and the number of microorganisms solubilizing TPR. No such correlation was observed in the rhizoplane. Initially 44 bacteria and 18 fungi were selected, but after 10 subcultures on agar plates and a liquid medium, only 6 bacteria and 2 fungi retained their high P solubilizing trait. A field inoculation trial was established during the growing season 2000–2001 in Koygour. Wheat cv. Tetra was inoculated with the 8 selected TSM (6 bacteria and 2 fungi) and fertilized with 30 kg ha−1 P added as TPR or diammonium phosphate (DAP). The growth parameters measured were plant height at 30 and 60 days, the number of leaves per main stem at 60 days, and root and shoot dry matter yields 60 days after planting. Root colonization by indigenous arbuscular mycorrhizas (AM) was also measured in 45-day-old plants. Significant interactions were observed between TSM inoculation and P-fertilization for root colonization with AM, plant height at 30 days and root dry matter yield. The bacterial isolate Pseudomonas sp. BR2, which appeared to be a mycorrhiza helper bacterium, significantly enhanced wheat seedling emergence very early (5 days after planting) under field condition, and caused 128% increase in root dry matter yield. The two TPR-solubilizing fungal isolates Aspergillus awamori Nakazawa C1 and Penicillium chrysogenum Thom C13 also caused respectively 60 and 44% increases in root dry matter yields. The choice of the TSM BR2, C1 and C13 for further field trials is discussed.  相似文献   

19.
Three strains of each of the seven taxa comprising the Penicillium series Corymbifera were surveyed by direct injection mass spectrometry (MS) and liquid chromatography–MS for the production of terrestric acid and roquefortine/oxaline biosynthesis pathway metabolites when cultured upon macerated tissue agars prepared from Allium cepa, Zingiber officinale, and Tulipa gesneriana, and on the defined medium Czapek yeast autolysate agar (CYA). A novel solid-phase extraction methodology was applied for the rapid purification of roquefortine metabolites from a complex matrix. Penicillium hordei and P. venetum produced roquefortine D and C, whereas P. hirsutum produced roquefortine D and C and glandicolines A and B. P. albocoremium, P. allii, and P. radicicola carried the pathway through to meleagrin, producing roquefortine D and C, glandicolines A and B, and meleagrin. P. tulipae produced all previously mentioned metabolites yet carried the pathway through to an end product recognized as epi-neoxaline, prompting the proposal of a roquefortine/epi-neoxaline biogenesis pathway. Terrestric acid production was stimulated by all Corymbifera strains on plant-derived media compared to CYA controls. In planta, production of terrestric acid, roquefortine C, glandicolines A and B, meleagrin, epi-neoxaline, and several other species-related secondary metabolites were confirmed from A. cepa bulbs infected with Corymbifera strains. The deposition of roquefortine/oxaline pathway metabolites as an extracellular nitrogen reserve for uptake and metabolism into growing mycelia and the synergistic role of terrestric acid and other Corymbifera secondary metabolites in enhancing the competitive fitness of Corymbifera species in planta are proposed.  相似文献   

20.
The silkworm Bombyx mori is a molecular genetic model for the Lepidoptera. Its odorant receptor genes have been described, and preliminary studies suggest that several are expressed specifically in the larval caterpillar stage. This study was undertaken to identify olfactory behaviors specific to the larvae. A two-choice leaf disk bioassay with naive neonate larvae was used to evaluate the attractiveness of three types of mulberry leaf (Morus alba): newly flushed leaves from branch tips, mature leaves, and mature leaves with feeding damage caused by conspecific larvae. Mature leaves with feeding damage were the most attractive, newly flushed leaves were moderately favored, and undamaged mature leaves were the least attractive. Volatile odors collected from whole mulberry leaves by using solid-phase microextraction fibers were analyzed by gas chromatography-mass spectrometry. The volatile profile of newly flushed leaves and mature leaves damaged by conspecific larvae was more complex compared to undamaged mature leaves. By comparing the volatile makeup of each leaf type, a list of 22 candidate odors responsible for attracting the neonate larvae was generated; α-farnesene was particularly notable as a herbivore-induced volatile. These odors will be used in future in vitro studies to determine whether they activate larval-specific odorant receptors. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号