首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
提出了一种基于堆栈的频繁闭项集挖掘算法SBFCI(Stack Based Frequent Closed Itemsets Generation),该算法采用栈技术避免了以往基于FP—tree的算法需对每个后缀模式递归构造FP—tree,并在上挖掘的弊端。从而大幅缩减了生成频繁闭项集的时间与空间开销。  相似文献   

2.
一种挖掘频繁闭项集的改进算法   总被引:1,自引:0,他引:1  
频繁闭项集的挖掘是近年来频繁项集挖掘研究的热点。本文引入了共生项集的概念,从一个新的角度看待频繁闭项集的挖掘问题。利用共生项集的性质,本文提出了一种新的无需遍历结果集的闭合性检查方法,并在此基础上对CLOSET算法进行改进,实验证明,取得了良好的效果。  相似文献   

3.
对于不确定性数据,传统判断项集是否频繁的方法并不能准确表达项集的频繁性,同样对于大型数据,频繁项集显得庞大和冗余。针对上述不足,在水平挖掘算法Apriori的基础上,提出一种基于不确定性数据的频繁闭项集挖掘算法UFCIM。利用置信度概率表达项集频繁的准确性,置信度越高,项集为频繁的准确性也越高,且由于频繁闭项集是频繁项集的一种无损压缩表示,因此利用压缩形式的频繁闭项集替代庞大的频繁项集。实验结果表明,该算法能够快速地挖掘出不确定性数据中的频繁闭项集,在减少项集冗余的同时保证项集的准确性和完整性。  相似文献   

4.
频繁闭项集惟一确定频繁项集且规模小得多,但挖掘频繁闭项集仍是很费时的.为提高挖掘效率,提出了一种改进的频繁闭项集挖掘算法DCI-Closed-Index. 该算法用“索引数组”来组织数据,通过为每个项目增加包含索引,找到频繁共同出现的项集.利用二进制位图技术,给出了一个求包含索引的快速算法.然后根据项目在包含索引中出现的频率由高到低进行排序,并利用包含索引作为启发信息,合并同时出现且支持度相等的频繁项,得到初始生成子,从而大大缩小了搜索空间.同时利用索引数组对每一个生成子的前序集和后序集进行约简,得到新的、较小的约简前序集和约简后序集.并证明了约简前序集和后序集与原来的前序集和后序集的功能是一样的.从而减少了候选生成子的集合包含判断的操作.实验结果表明,该算法的性能优于其他主流算法.  相似文献   

5.
数据流频繁闭合模式挖掘是数据挖掘中的一大挑战.目前,在这方面的研究很少.提出了一种新的在滑动窗模型下发现频繁闭项集的算法--FCISW(frequent closed itemsets mining in sliding window).首先,FCISW算法在ST(suffix tree)结构中应用自底向上的遍历方式单遍有效地挖掘所有频繁闭项集,并将挖掘结果保存到一种新的bit_vector表结构中.当新的挖掘结果要存入bit_vector表时,它先与表中已存入的频繁闭项集进行位向量或操作,如果条件全部满足,再存入这个挖掘结果.这样可以大大提高频繁闭项集替换和重复比较的速度.最后,FCISW算法可以在滑动窗中快速有效地进行增量更新.实验证明,FCISW算法在内存应用和运行时间上都存在一定的优势.  相似文献   

6.
一种改进的频繁闭项集挖掘算法   总被引:2,自引:0,他引:2  
频繁闭项集惟一确定频繁项集且规模小得多,但挖掘频繁闭项集仍是很费时的.为提高挖掘效率,提出了一种改进的频繁闭项集挖掘算法DCI-Closed-Index.该算法用"索引数组"来组织数据,通过为每个项目增加包含索引,找到频繁共同出现的项集.利用二进制位图技术,给出了一个求包含索引的快速算法.然后根据项目在包含索引中出现的频率由高到低进行排序,并利用包含索引作为启发信息,合并同时出现且支持度相等的频繁项,得到初始生成子,从而大大缩小了搜索空间.同时利用索引数组对每一个生成子的前序集和后序集进行约简,得到新的、较小的约简前序集和约简后序集.并证明了约简前序集和后序集与原来的前序集和后序集的功能是一样的.从而减少了候选生成子的集合包含判断的操作.实验结果表明,该算法的性能优于其他主流算法.  相似文献   

7.
事务间频繁项集将传统的单维事务内关联规则扩展到多维跨事务关联规则,但事务问频繁项集的数量随滑 动时同间窗口的增大而迅速增加.利用频繁闭项集的特点.提出事务间频繁闭项集的概念及其挖掘算法(FCITA).该算法采用分割和条件数据库技术,避免生成庞大的扩展数据库;利用扩展二进制形武压缩事务,从而提高支持度的计算效事.此外,动态排序和哈希表极大地减少了频繁闭项集的测试次数.仿真比较表明,FCITA算法具有较高的挖掘效率.  相似文献   

8.
针对相关算法在挖掘频繁闭项集时所存在的问题, 提出了一种基于位运算的频繁闭项集挖掘算法。该算法首先将数据集转换成布尔矩阵, 只需扫描数据集一次; 通过位运算计算支持度, 利用矩阵和数组存储辅助信息, 减少时间和空间消耗; 深度优先搜索产生频繁闭项集时利用剪枝策略进一步减少挖掘时间; 利用同生项集性质进行闭合性检测, 无须检查超集或子集。理论分析和实验结果验证了该算法的有效性。  相似文献   

9.
张炘  廖频  郭波 《计算机应用》2010,30(3):806-809
频繁闭项集挖掘是许多数据挖掘应用中的重要问题。为减少候选项集数量和降低支持度计算的开销,提出一种新的深度优先搜索频繁闭项集(DFFCI)的算法。将改进的压缩频繁模式树(CFP-Tree)表示的数据集信息投影到划分矩阵,使用二进制向量逻辑运算计算支持度,简化了计算过程,减少了时间开销;采用基于支持度预计算技术的全局2-项剪枝和局部扩展剪枝,有效削减了搜索空间。实验结果表明该算法的性能优于其他主流深度优先算法。  相似文献   

10.
频繁闭项集的挖掘是发现数据项之间关联规则的一种有效方式。当前以MapReduce模式为基础的云计算平台为解决海量数据中的关联规则挖掘问题提供新的解决思路。文中提出并实现一种基于Hadoop云计算平台的频繁闭项集的并行挖掘算法。该算法主要包括并行计数、构造全局频繁项表、并行挖掘局部频繁闭项集和并行筛选全局频繁闭项集四个步骤。在多个数据集上的实验表明,该方法能较大提高数据挖掘的效率,具有较好的加速比。  相似文献   

11.
在大的数据集合中,开采其中的频繁项目集集合是数据挖掘中极具挑战的重要任务。已经有很多高效的算法被总结了出来。本文提出了一种思想,即开采频繁项目集集合的一 个子集,我们称之为频繁无析取规则集集合,而并非开采完全的频繁项目集集合。我们证明能借助它不读取数据库而还原出频繁项目集集合的全集和它们的支持度。本文还提 提出了一个开采无析取规则集集合的算法HOPE-Ⅱ,实验结果显示了其高效性。我们将它与另一种称为频繁封闭集的精简集进行对比,几乎所有的实验结果都显示使用无析取规则集集合比使用封闭集集合来开采频繁项目集集合更有效。  相似文献   

12.
SPADE: An Efficient Algorithm for Mining Frequent Sequences   总被引:63,自引:0,他引:63  
Zaki  Mohammed J. 《Machine Learning》2001,42(1-2):31-60
In this paper we present SPADE, a new algorithm for fast discovery of Sequential Patterns. The existing solutions to this problem make repeated database scans, and use complex hash structures which have poor locality. SPADE utilizes combinatorial properties to decompose the original problem into smaller sub-problems, that can be independently solved in main-memory using efficient lattice search techniques, and using simple join operations. All sequences are discovered in only three database scans. Experiments show that SPADE outperforms the best previous algorithm by a factor of two, and by an order of magnitude with some pre-processed data. It also has linear scalability with respect to the number of input-sequences, and a number of other database parameters. Finally, we discuss how the results of sequence mining can be applied in a real application domain.  相似文献   

13.
一种高效频繁子图挖掘算法   总被引:11,自引:1,他引:11  
李先通  李建中  高宏 《软件学报》2007,18(10):2469-2480
由于在频繁项集和频繁序列上取得的成功,数据挖掘技术正在着手解决结构化模式挖掘问题--频繁子图挖掘.诸如化学、生物学、计算机网络和WWW等应用技术都需要挖掘此类模式.提出了一种频繁子图挖掘的新算法.该算法通过对频繁子树的扩展,避免了图挖掘过程中高代价的计算过程.目前最好的频繁子图挖掘算法的时间复杂性是O(n3·2n),其中,n是图集中的频繁边数.提出算法的时间复杂性是O〔2n·n2.5/logn〕,性能提高了O(√n·logn)倍.实验结果也证实了这一理论分析.  相似文献   

14.
在数据挖掘研究中,频繁闭项目集挖掘成为重要的研究方向.目前已有的频繁闭项目集挖掘算法主要针对单机环境,有关分布式环境下的全局频繁闭项目集挖掘算法的研究尚不多见.针对无共享体系结构数据水平分布的情况,提出了一种分布式快速挖掘全局频繁闭项目集增量式更新算法,算法通过对各节点候选频繁项目集进行预处理,有效地降低网络通信量,提高全局频繁闭项目集挖掘算法的效率,该算法充分利用前次挖掘结果来发现新的全局频繁闭项目集,具有较高的效率.理论分析和实验结果表明算法是有效的.  相似文献   

15.
数据流闭频繁项集挖掘算法得到了广泛的研究,其中一个典型的工作就是NewMomen、算法。针对New- Moment算法存在搜索空间大而造成算法时间效率低的问题,提出了一种改进的数据流闭频繁项集挖掘算法A-Ncw- Moment。它设计了一个二进制位表示项目与扩展的频繁项目列表相结合的数据结构,来记录数据流信息及闭频繁项 集。在窗体初始阶段,首先挖掘频繁1一项集所产生的支持度为最大的最长闭频繁项集,接着提出新的“不需扩展策略” 和“向下扩展策略”来避免生成大量中间结果,快速发现其余闭频繁项集,达到极大缩小搜索空间的目的。在窗体滑动 阶段,提出“动态不频繁剪枝策略”来从已生成的闭频繁项集中快速删除非闭频繁项集,并提出“动态不搜索策略”来动 态维护所有闭频繁项集的生成,以降低闭频繁项集的维护代价,提高算法的效率。理论分析与实验结果表明,A-New- Moment算法具有较好的性能。  相似文献   

16.
序列模式发现在数据挖掘领域中的地位越来越重要,本文首先介绍了频繁序列挖掘模式的基本概念,然后基于投影树算法,给出了其数据并行模式和任务并行模式,接着进行了算法的复杂性分析,我们的实验证明这些算法都能获得较好的加速比,而且任务并行模式具有更好的可扩展性。  相似文献   

17.
GenMax: An Efficient Algorithm for Mining Maximal Frequent Itemsets   总被引:4,自引:0,他引:4  
We present GenMax, a backtrack search based algorithm for mining maximal frequent itemsets. GenMax uses a number of optimizations to prune the search space. It uses a novel technique called progressive focusing to perform maximality checking, and diffset propagation to perform fast frequency computation. Systematic experimental comparison with previous work indicates that different methods have varying strengths and weaknesses based on dataset characteristics. We found GenMax to be a highly efficient method to mine the exact set of maximal patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号