首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy level alignments at the interface of N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB)/VO2/fluorine-doped tin oxide (FTO) were studied by photoemission spectroscopy. The overall hole injection barrier between FTO and NPB was reduced from 1.38 to 0.59 eV with the insertion of a VO2 hole injection layer. This could allow direct hole injection from FTO to NPB through a shallow valence band of VO2. Surprisingly, VO2 can also act as a charge generation layer due to its small band gap of 0.80 eV. That is, its conduction band is quite close to the Fermi level, and thus electrons can be extracted from the highest occupied molecular orbital (HOMO) of NPB, which is equivalent to hole injection into the NPB HOMO.  相似文献   

2.
《Organic Electronics》2008,9(6):985-993
It has been experimentally found that molybdenum oxide (MoO3) as the interfacial modification layer on indium-tin-oxide (ITO) in organic light-emitting diodes (OLEDs) significantly improves the efficiency and lifetime. In this paper, the role of MoO3 and MoO3 doped N,N′-di(naphthalene-1-yl)–N,N′-diphenyl-benzidine (NPB) as the interface modification layer on ITO in improvement of the efficiency and stability of OLEDs is investigated in detail by atomic force microscopy (AFM), polarized optical microscopy, transmission spectra, ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The studies on the energy level and the morphology of the films treated at different temperatures clearly show that the MoO3 and MoO3:NPB on ITO can reduce the hole injection barrier, improve the interfacial stability and suppress the crystallization of hole-transporting NPB, leading to a higher efficiency and longer lifetime of OLEDs.  相似文献   

3.
《Organic Electronics》2008,9(5):805-808
Efficient top-emitting organic light-emitting diodes were fabricated using copper iodide (CuI) doped 1,4-bis[N-(1-naphthyl)-N′-phenylamino]-4,4′-diamine (NPB) as a hole injection layer and Ir(ppy)3 doped CBP as the emitting layer. CuI doped NPB layer functions as an efficient p-doped hole injection layer and significantly improves hole injection from a silver bottom electrode. The top-emitting device shows high current efficiency of 69 cd/A with Lambertian emission pattern. The enhanced hole injection is originated from the formation of the charge transfer complex between CuI and NPB.  相似文献   

4.
《Organic Electronics》2008,9(5):890-894
LaCuOSe:Mg is a wide-gap p-type semiconductor with a high conductivity and a large work function. Potential of LaCuOSe:Mg as a transparent hole-injection electrode of organic light-emitting diodes (OLEDs) was examined by employing N,N′-diphenyl-N,N′-bis (1,1′-biphenyl)-4,4′-diamine (NPB) for a hole transport layer. Photoemission spectroscopy revealed that an oxygen plasma treated surface of LaCuOSe:Mg formed a hole-injection barrier as low as 0.3 eV, which is approximately a half of a conventional ITO/NPB interface. Hole-only devices composed of a LaCuOSe:Mg/NPB/Al structure showed a low threshold voltage ∼0.2 V and high-density current drivability of 250 mA cm−2 at 2 V, which is larger by two orders of magnitude than that of ITO/NPB/Al devices. These results demonstrate that LaCuOSe:Mg has great potential as an efficient transparent anode for OLEDs and other organic electronic devices.  相似文献   

5.
An organic alternating current electroluminescence (OACEL) device based on 4,4′-bis(N-phenyl-1-naphthylamino) biphenyl (NPB)/1,4,5,8,9,11-hexaazatriphenylene (HAT-CN)/tris(8-hydroxy-quin-olinato) aluminum (Alq3) doped with cesium carbonate (Cs2CO3) internal charge generation unit is demonstrated. Maximum luminance of 299 cd/m2 is observed for Alq3 doped with 10-(2-Benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H, 11H-(1) benzopyropyrano (6,7-8-I,j)quinolizin-11-one (C545T) fluorescent emission layer when driven with a peak–peak voltage of 80 V at 120 kHz. The key charge-generation role of NPB/HAT-CN interface is studied experimentally. Furthermore, influence of evaporation sequence of this internal charge generation unit on OACEL performance is investigated. This work demonstrated that the undoped charge generation unit – NPB/HATCN, can also be a good candidate for charge generation unit of OACEL device.  相似文献   

6.
《Organic Electronics》2007,8(6):683-689
White organic light-emitting diodes (WOLEDs) with four wavelengths were fabricated by using three doped layers, which were obtained by separating recombination zones into three emitter layers. Among these emitters, blue emissions with two wavelengths (456 and 487 nm) were occurred in the 4,4′-bis(carbazoyl-(9))-stilbene (BCS) host doped with a perylene dye. Also, a green emission was originated from the tris(8-quinolinolato)aluminum (III) (Alq3) host doped with a green fluorescent of 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]benzopyrano [6,7,8-ij]-quinolizin-11-one (C545T) dye. Finally, an orange emission was obtained from the N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) host doped with a 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) dye. The white light could be emitted by simultaneously controlling the emitter thickness and concentration of fluorescent dyes in each emissive layer, resulting in partial excitations among those three emitter layers. Electroluminescent spectra of the device obtained in this study were not sensitive to driving voltage of the device. Also, the maximum luminance for the white OLED with the CIE coordinate of (0.34, 0.34) was 56,300 cd/m2 at the applied bias voltage of 11.6 V. Also, its external quantum and the power efficiency at about 100 cd/m2 were 1.68% and 2.41 lm/W, respectively.  相似文献   

7.
《Organic Electronics》2008,9(1):51-62
Surface energy of indium tin oxide (ITO) surfaces treated by different plasmas, including argon (Ar–P), hydrogen (H2–P), carbon tetrafluoride (CF4–P), and oxygen (O2–P), was measured and analyzed. The initial growth mode of hole transport layers (HTLs) was investigated by atomic force microscope observation of thermally deposited 2 nm thick N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) on the plasma treated ITO surfaces. The results show that different plasma treatments of ITO influence the growth of HTLs in significantly different ways through the modification of surface energy, especially the polar component. The O2–P and CF4–P were found to be most effective in enhancing surface polarity through decontamination and increased dipoles, leading to more uniform and denser nucleation of NPB on the treated ITO surfaces. It was further found that increased density of nucleation sites resulted in a decreased driving voltage of OLEDs. Under the same fabricating conditions, a lowest driving voltage of 4.1 V was measured at a luminance of 200 cd/m2 for the samples treated in CF4–P, followed by the samples treated in O2–P (5.6 V), Ar–P (6.4 V), as-clean (7.0 V) and H2–P (7.2 V) plasma, respectively. The mechanisms behind the improved performance were proposed and discussed.  相似文献   

8.
We report on a high-quality hybrid intermediate connector (IC) used in tandem organic light-emitting diodes (OLEDs), which is composed of an ultrathin MoO3 interlayer sandwiched between a n-type Cs2CO3-doped 4,7-diphenyl-1,10-phenanthroline (BPhen) layer and a p-type MoO3-doped N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) layer. The charge generation characteristics for light emission in tandem OLEDs have been identified by studying the interfaces and the corresponding devices. The hybrid IC structure exhibits superior charge generation capability, and its interfacial electronic structures are beneficial to the generation and injection of electrons and holes into bottom and top emission units, respectively. Compared to the organic-TMO bilayer and doped p–n junction structures, the hybrid IC structure combining MoO3-based interlayer and p-type doping can effectively decrease the driving voltage and improve the current efficiency of tandem devices due to the increased bulk heterojunction-like charge generation interfaces. Our results indicate that the TMO-based hybrid IC structure can be a good structure in the fabrication of high-efficiency tandem OLEDs.  相似文献   

9.
We demonstrate the thermal stability of transition-metal-oxide (molybdenum oxide; MoO3)-doped organic semiconductors. Impedance spectroscopy analysis indicated that thermal deformation of the intrinsic 1,4-bis[N-(1-naphthyl)-N′-phenylamino]-4,4′-diamine (NPB) layer is facilitated when the MoO3-doped NPB layer is deposited on the intrinsic NPB layer. The resistance of the intrinsic NPB layer is reduced from 300 kΩ to 3 kΩ after thermal annealing at 100 °C for 30 min. Temperature-dependent conductance/angular frequency–frequency (G/w-f-T) analysis revealed that the doping efficiency of MoO3, which is represented by the activation energy (Ea), is reduced after the annealing process.  相似文献   

10.
Conventional organic light emitting devices have a bottom buffer interlayer placed underneath the hole transporting layer (HTL) to improve hole injection from the indium tin oxide (ITO) electrode. In this work, a substantial enhancement in hole injection efficiency is demonstrated when an electron accepting interlayer is evaporated on top of the HTL in an inverted device along with a top hole injection anode compared with the conventional device with a bottom hole injection anode. Current–voltage and space‐charge‐limited dark injection (DI‐SCLC) measurements were used to characterize the conventional and inverted N,N′‐diphenyl‐N,N′‐bis(1‐naphthyl)(1,1biphenyl)‐4,4diamine (NPB) hole‐only devices with either molybdenum trioxide (MoO3) or 1,4,5,8,9,11‐hexaazatriphenylene hexacarbonitrile (HAT‐CN) as the interlayer. Both normal and inverted devices with HAT‐CN showed significantly higher injection efficiencies compared to similar devices with MoO3, with the inverted device with HAT‐CN as the interlayer showing a hole injection efficiency close to 100%. The results from doping NPB with MoO3 or HAT‐CN confirmed that the injection efficiency enhancements in the inverted devices were due to the enhanced charge transfer at the electron acceptor/NPB interface.  相似文献   

11.
In this article we report on the performances of phosphorescent orange organic light-emitting diodes (OLEDs) having a high operational stability. The fabricated devices all consist of a “hybrid” structure, where the hole-injection layer was processed from solution, while the rest of the organic materials were deposited by vacuum thermal evaporation. A device stack having an emissive layer comprising a carbazole-based host TCzMe doped with the orange phosphor tris(2-phenylquinoline)iridium(III) [Ir(2-phq)3] shows improved efficiencies compared to a the same device with the standard N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)-benzidine (NPB) as host material. External quantum efficiency (EQE) up to 7.4% and a power efficiency of 16 lm/W were demonstrated using TCzMe. Most importantly, the operational stability of the device was largely improved, resulting in extrapolated values reaching lifetimes well above 100,000 h at initial luminance of 1000 Cd/m2.  相似文献   

12.
The energy level alignment and chemical reaction at the interface between the hole injection and transport layers in an organic light-emitting diode (OLED) structure has been studied using in-situ X-ray and ultraviolet photoelectron spectroscopy. The hole injection barrier measured by the positions of the highest occupied molecular orbital (HOMO) for N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1-biphenyl-4,4-diamine (NPB)/indium tin oxide (ITO) was estimated 1.32 eV, while that with a thin WO3 layer inserted between the NPB and ITO was significantly lowered to 0.46 eV. This barrier height reduction is followed by a large work function change which is likely due to the formation of new interface dipole. Upon annealing the WO3 interlayer at 350 °C, the reduction of hole injection barrier height largely disappears. This is attributed to a chemical modification occurring in the WO3 such as oxygen vacancy formation.  相似文献   

13.
《Organic Electronics》2014,15(1):16-21
We demonstrate that direct charge transfer (CT) from trap states of host molecules to the p-dopant molecules raises the doping effect of organic semiconductors (OS). Electrons of the trap states in 4,4′-N,N′-dicarbazolyl-biphenyl (CBP) (EHOMO = 6.1 eV) are directly transferred to the p-dopant, 2,2′-(perfluoronaphthalene-2,6-diylidene) dimalononitrile (F6-TCNNQ) (ELUMO = 5.4 eV). This doping process enhances the conductivity of doped OS by different ways from the ordinary doping mechanism of generating free hole carriers and filling trap states of doped OS. Trap density and trap energy are analysed by impedance spectroscopy and it is shown that the direct charge transfer from deep trap states of host to dopants enhances the hole mobility of doped OS and the IV characteristics of hole only devices.  相似文献   

14.
A study on p-doping of organic wide band gap materials with Molybdenum trioxide using current transport measurements, ultraviolet photoelectron spectroscopy and inverse photoelectron spectroscopy is presented. When MoO3 is co-evaporated with 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP), a significant increase in conductivity is observed, compared to intrinsic CBP thin films. This increase in conductivity is due to electron transfer from the highest occupied molecular orbital of the host molecules to very low lying unfilled states of embedded Mo3O9 clusters. The energy levels of these clusters are estimated by the energy levels of a neat MoO3 thin film with a work function of 6.86 eV, an electron affinity of 6.7 eV and an ionization energy of 9.68 eV. The Fermi level of MoO3-doped CBP and N,N′-bis(1-naphtyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (α-NPD) thin films rapidly shifts with increasing doping concentration towards the occupied states. Pinning of the Fermi level several 100 meV above the HOMO edge is observed for doping concentrations higher than 2 mol% and is explained in terms of a Gaussian density of HOMO states. We determine a relatively low dopant activation of ~0.5%, which is due to Coulomb-trapping of hole carriers at the ionized dopant sites.  相似文献   

15.
Highly efficient fluorescent white organic light-emitting diodes (WOLEDs) have been fabricated by using three red, green and blue, separately monochromatic emission layers. The red and blue emissive layers are based on 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) doped N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine (NPB) and p-bis(p-N,N-diphenyl-amino-styryl) benzene (DSA-ph) doped 2-methyl-9,10-di(2-naphthyl) anthracene (MADN), respectively; and the green emissive layer is based on tris(8-hydroxyquionline)aluminum(Alq3) doped with 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,1[H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-1]-one (C545T), which is sandwiched between the red and the blue emissive layers. It can be seen that the devices show stable white emission with Commission International de L’Eclairage coordinates of (0.41, 0.41) and color rendering index (CRI) of 84 in a wide range of bias voltages. The maximum power efficiency, current efficiency and quantum efficiency reach 15.9 lm/W, 20.8 cd/A and 8.4%, respectively. The power efficiency at brightness of 500 cd/m2 still arrives at 7.9 lm/W, and the half-lifetime under the initial luminance of 500 cd/m2 is over 3500 h.  相似文献   

16.
We have prepared efficient red organic light-emitting diodes (OLEDs) incorporating 2,7-bis(diphenylphosphoryl)-9-[4-(N,N-diphenylamino)phenyl]-9-phenylfluorene (POAPF) as the host material doped with the osmium phosphor Os(fptz)2(PPh2Me)2 (fptz = 3-trifluoromethyl-5-pyridyl-1,2,4-triazole). POAPF, which possesses bipolar functionalities, can facilitate both hole- and electron-injection from the charge transport layers to provide a balanced charge flux within the emission layer. The peak electroluminescence performance of the device reached as high as 19.9% and 34.5 lm/W – the highest values reported to date for a red phosphorescent OLED. In addition, we fabricated a POAPF-based white light OLED – containing red-[doped with Os(fptz)2(PPh2Me)2] and blue-emitting {doped with iridium(III) bis[(4,6-difluorophenyl)pyridinato-N,C2′] picolinate, FIrpic} layers – that also exhibited satisfactory efficiencies (18.4% and 43.9 lm/W).  相似文献   

17.
In this work we present a permeable-base transistor consisting of a 60 nm thick N,N′-diphenyl-N,N′-bis(1-naphthylphenyl)-1,1′-biphenyl-4,4′-diamine layer or a 40 nm thick 2,6-diphenyl-indenofluorene layer as the emitter, a Ca/Al/Ca multilayer as the metal base, and p-Si as collector. In the base, the Ca layers are 5 nm thick and the Al layer was varied between 10 and 40 nm, the best results obtained with a 20 nm thick layer. The devices present common-base current gain with both organic layer and silicon acting as emitter, but there is only observable common-emitter current gain when the organic semiconductor acts as emitter. The obtained common-emitter current gain, ~2, is independent on collector-emitter voltage, base current and organic emitter in a reasonable wide interval. Air exposure or annealing of the base is necessary to achieve these characteristics, indicating that an oxide layer is beneficial to proper device operation.  相似文献   

18.
Bidirectional negative differential resistance (NDR) at room temperature with high peak-to-valley current ratio (PVCR) of ~10 are observed from vertical organic light-emitting transistor indium-tin oxide (ITO)/N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine) (α-NPD)(60 nm)/Al(30 nm)/α-NPD(60 nm)/tris-(8-hydroxyquinoline) aluminium (Alq3)(50 nm)/Al by narrowing the transport channels for charge carriers with a thick-enough middle Al gate electrode layer to block charge carriers transporting from source electrode to drain electrode. When the transport channel for charge carriers gets large enough, the controllability of gate bias on the drain–source current gets weaker and the device almost works as an organic light-emitting diode only. Therefore, it provides a very simple way to produce NDR device with dominant bidirectional NDR and high PVCR (~10) at room temperature by narrowing transport channels for charge carriers in optoelectronics.  相似文献   

19.
The influence of charge transfer from organic molecules to transition metal oxide on molecular orientation characteristics of N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (α-NPD) was investigated. Absorption peaks originating from neutral and cationic states of α-NPD increased in absorbance when α-NPD was deposited on metal oxides (MoO2, MoO3, and WO3). Photoluminescence from this α-NPD was directional normal to the film plane. These results indicate that α-NPD is horizontally oriented near the metal oxide surfaces so that charge transfer from α-NPD to metal oxide occurs efficiently. Such horizontal orientation of α-NPD enhanced current density of hole-only α-NPD devices because of improvement of wave function overlap and charge transfer degree at the metal oxide/α-NPD interface.  相似文献   

20.
The charge injection and transport properties of a high performance semiconducting polymer for organic photovoltaic (OPV) applications, poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT), are investigated by time-of-flight (TOF) and dark-injection space-charge-limited current (DI-SCLC) techniques. OPV cells employing PCDTBT are known to possess power conversion efficiency (PCE) exceeding 6% [1], [2]. While TOF probes only the hole mobilities of a thick film, DI-SCLC is shown to be useful down to a sample thickness of ~200 nm, which is comparable to thicknesses used in OPV cells. We show that for pristine PCDTBT, the hole mobilities for both thick used in TOF and thin films for DI-SCLC are essentially the same, and they are in the range of 0.4–3.0 × 10?4 cm2/Vs at room temperature. Both poly(3,4-ethylene dioxythioplene) doped with poly(strenesulfonate) (PEDOT:PSS) and molybdenum (VI) oxide (MoO3) form quasi-Ohmic contacts to PCDTBT with better hole injection from MoO3. Furthermore, the Gaussian Disorder Model (GDM) was employed to analyze the hopping transport of PCDTBT thin films. We show that PCDTBT possesses a relatively large energetic disorder (σ) of ~129 meV, which is significantly higher than the σ of poly(3-hexylthiophene) (P3HT) processed under similar conditions. The correlation between σ and OPV device performance is addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号