首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water-soluble amino acid derivatives of gadolinium (Gd) endohedral metallofullerenes (AAD-EMFs), Gd@C82Om(OH)n(NHCH2CH2COOH)l (m ≈ 6, n ≈ 16 and l ≈ 8) are synthesized by a direct reaction of the pure endohedral metallofullerene Gd@C82 with an excess of alkaline solution of β-alanine. The structure of the AAD-EMFs is characterized by FTIR, XPS and laser-desorption time-of-flight (LD-TOF) mass spectrometries. Water proton relaxivity analysis indicates that the longitudinal relaxivity R1 (the effect on 1/T1, 9.1 mM−1 s−1) of AAD-EMFs is higher than that of the commercial MRI contrast agent, Magnevist (gadolinium-diethylenetriaminepentaacetic acid, Gd-DTPA, 5.6 mM−1 s−1). The MRI phantom studies are performed to confirm the high efficiency of this sample as MRI contrast agents.  相似文献   

2.
The paramagnetic gadolinium(III) ion is used as contrast agent in magnetic resonance (MR) imaging to improve the lesion detection and characterization. It generates a signal by changing the relaxivity of protons from associated water molecules and creates a clearer physical distinction between the molecule and the surrounding tissues. New gadolinium-based contrast agents displaying larger relaxivity values and specifically targeted might provide higher resolution and better functional images. We have synthesized the gadolinium(III) complex of formula [Gd(thy)2(H2O)6](ClO4)3·2H2O (1) [thy = 5-methyl-1H-pyrimidine-2,4-dione or thymine], which is the first reported compound based on gadolinium and thymine nucleobase. 1 has been characterized through UV-vis, IR, SEM-EDAX, and single-crystal X-ray diffraction techniques, and its magnetic and relaxometric properties have been investigated by means of SQUID magnetometer and MR imaging phantom studies, respectively. On the basis of its high relaxivity values, this gadolinium(III) complex can be considered a suitable candidate for contrast-enhanced magnetic resonance imaging.  相似文献   

3.
《Ceramics International》2015,41(4):5734-5748
Polycrystalline samples of α-AgY1−xGdx(WO4)2 with x=0, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2, and 1 have been prepared by a solid state reaction method and the influence of Gd3+ substitution for Y3+ on microstructure, thermal and magnetic properties was investigated. The X-ray diffraction analysis showed the phases to crystallize in the monoclinic symmetry, space group C2/m. A reversible monoclinic to tetragonal phase transition occurs in AgY1−xGdx(WO4)2 and strongly depends on Gd3+ ion concentration. Electron paramagnetic resonance (EPR) spectra of Gd3+ ions showed non-monotonous dependence of interaction strength on gadolinium concentration. Magnetic measurements showed paramagnetic behavior and strong increase of magnetic moment as the yttrium content decreases.  相似文献   

4.
Gadolinium based luminescent materials have been researched due to their unique optical and magnetic properties with excellent chemical stability, which are useful to apply in both magnetic resonance imaging (MRI) and fluorescence imaging (FI). In this work, red emitting Gd2O3:Pr3+ nanospheres were successfully fabricated by a facile co-precipitation method. The change of reaction time influenced the size of Gd2O3:Pr3+ nanospheres and exhibited the sizes between 110 and 250?nm. The size of the Gd2O3:Pr3+ nanospheres influenced the luminescence and MR imaging signal intensity. Therefore, it can be applied for bi-functional contrast agents.  相似文献   

5.
Monomeric and dimeric AAZTA-based bifunctional chelators (AAZTA=6-amino-6-methylperhydro-1,4-diazepine tetraacetic acid) were attached to different generations (G0, G1 and G2) of ethylenediamine-cored PAMAM dendrimers (PAMAM=polyamidoamine) to obtain a series of six dendrimeric systems with 4 to 32 chelates at the periphery. These GdIII-loaded dendrimers have molecular weight ranging from 3.5 to 25 kDa, thus allowing a systematic investigation on the changes in relaxivity (r1) with the variation of the rotational dynamics following the increase in molecular size. Variable-temperature 17O NMR (on the dimeric building block Gd2 L2 ) and 1H Nuclear Magnetic Relaxation Dispersion measurements at different temperatures indicate that the water exchange lifetime (τM∼90 ns) of the two inner sphere water molecules does not represent a limiting factor to the relaxivity of the systems. The r1 values at 1.5 T (60 MHz) and 298 K increases from 10.2 mM−1 s−1 for the monomer Gd L1 to 31.4 mM−1 s−1 for the dendrimer Gd32 G2-32 (+308 %). However, the relaxivity (per Gd) does not show a linear dependence on the molecular mass, but rather the enhancement tends to attenuate markedly for larger systems. This effect has been attributed to the growing decrease in correlation between local rotational motions and global molecular tumbling.  相似文献   

6.
《Ceramics International》2020,46(14):22079-22089
A series of new transparent and magnetic germanoborate glasses in the system (100-x)[60GeO2–25B2O3–10Na2O–4Al2O3–1PbO] – (x) Gd2O3, with x = 0, 1, 2, 5, 10, 15 and 20 mol%, was prepared and studied with respect to their thermal and structural changes in the presence of Gd2O3. Based on Differential Scanning Calorimetre (DSC) analysis, a glass with 5% of Gd2O3 showed a high thermal stability, which progressively decreases for samples with higher content of Gd2O3. By the analysis of Raman and Fourier Transform Infrared (FTIR) spectra, it was possible to identify that by increasing the amount of Gd2O3, a progressive depolymerization of 6-membered Ge[IV] rings is promoted, concomitant with an increase of Ge[IV] tetrahedra units with non-briding oxygens. The structural analysis through the local-sensitive techniques EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure) showed that the short-range structural modification around the elements Ge and Gd3+ does not change with the addition of Gd2O3 and the presence of germanium four-fold coordination [GeIV] and Gd3+ states, respectively. A simulation of the coordination number (N), the interatomic distance (R) of Ge–O and Gd–O bonds and the Debye-Waller factor was also carried out. The microstructure, after crystallization, of the sample with 15 mol% of Gd2O3 was evaluated using optical and electron microscopes. Finally, the paramagnetic behaviour and ion probe quantification of Gd3+ ions were obtained based on magnetic susceptibility measurements.  相似文献   

7.
To enhance biocompatibility and physiological stability of hydrophobic MnO nanoparticles as contrast agent of T1‐weighted magnetic resonance imaging (MRI), dopamine‐functionalized poly(ethylene glycol) (PEG) was used to coat the surface of about 5 nm MnO nanoparticles. Although hydrophilic coating might decrease longitudinal relaxivity due to inhibiting the intimate contact between manganese of nanoparticle surface and proton in water molecules, higher longitudinal relaxivity was still maintained by manipulating the PEGylation degree of MnO nanoparticles. Moreover, in vivo MRI demonstrated considerable signal enhancement in liver and kidney using PEGylated MnO nanoparticles. Interestedly, the PEGylation induced the formation of about 120 nm clusters with high stability in storing and physiological conditions, indicating passive targeting potential to tumor and prolonged circulation in blood. In addition, the cytotoxicity of PEGylated MnO nanoparticles also proved negligible. Consequently, the convenient PEGylation strategy toward MnO nanoparticles could not only realize a good “trade‐off” between hydrophilic modification and high longitudinal relaxivity but also contribute additional advantages, such as passive targeting to tumor and long blood circulation, to MRI diagnosis of tumor. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42360.  相似文献   

8.
Two new Gd(III) complexes 1 and 2 of the type [Gd(L)H2O]·nH2O were synthesized from DTPA-bis(amide) conjugates of arylpiperazinyl amines. The relaxivity (R1) of these complexes was measured in deionized water, which revealed that complex 2 had a higher relaxivity than 1 and Omniscan®, a commercially available MRI contrast agent. The cytotoxicity studies of 1 and 2 indicated that they are non-toxic which warrant their physiological suitability as potential contrast agents for MRI. All the synthesized ligands and complexes were characterized with the aid of analytical and spectroscopic methods including elemental analysis, 1H NMR, FT-IR, XPS and fast atom bombardment (FAB) mass spectrometry.  相似文献   

9.
Gadolinium was recovered as dendrites by electrolysis of Gd2O3 dissolved in molten LiF-GdF3 (65-35 mol%) at 850–900°C. Both inert anodes (noble metals) and graphite anode were used. With a platinum anode, anodic corrosion began at current densities (cd) of about 9 A dm?2. Below this cd the platinum appears to be passivated, and no platinum was detected in the electrowon gadolinium. Electrolysis with graphite anode resulted in carbon contamination of about 0.14 wt% of the gadolinium metal. The electrowon metal contained 100–500 wt ppm oxygen, depending on the oxide concentration in the electrolyte.  相似文献   

10.
J.X. Wei  Y. Yin  J.L. Yan 《Ceramics International》2021,47(14):19835-19842
GdxSr2-xCoO4-layered perovskites with varying gadolinium content (x = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) were synthesised using a conventional solid-state reaction method in air. X-ray diffraction (XRD) analysis indicated that all samples were single phase with a tetragonal I4/mmm K2NiF4-type structure. Rietveld refinements showed that the lattice parameters and the in-plane Co–O bond length decreased with increasing Gd3+ content, suggesting stronger structural distortion. The X-ray photoelectron spectroscopy (XPS) analysis indicated that cobalt ions on the surface of GdxSr2-xCoO4 had Co3+ and Co4+mixed valence states and many oxygen vacancies. The thermoelectric properties of GdxSr2-xCoO4 (x = 0.7, 0.8) were also investigated. The temperature dependencies of the electrical conductivity (σ) and Seebeck coefficient (S) up to 750 °C for Gd0.7Sr1.3CoO4 showed maximum and minimum values at approximately 550 °C. Below 550 °C with increasing Gd3+ content, S increased, whereas σ and the thermal conductivity (κ) decreased, leading to an increase in the figure of merit (ZT). A maximum ZT value of 0.0039 for Gd0.8Sr1.2CoO4 was obtained at 400 °C. The variations of σ, S and κ with x and temperature are discussed.  相似文献   

11.
《Ceramics International》2016,42(3):4176-4184
The effect of the La3+ and Gd3+ co-doping on the structure, electric and magnetic properties of BiFeO3 (BFO) ceramics are investigated. For the compositions (x=0 and 0≤y≤0.15) in the perovskite structured LaxGdyBi1−(x+y)FeO3 system, a tiny residual phase of Bi2Fe4O9 is noticed. Such a secondary phase is suppressed with the incorporation of ‘La’ content (x). The magnitude of dielectric constant (εr) increases progressively by increasing the ‘La’ content from x=0 to 0.15 with a remarkable decrease of dielectric loss. For x=0.15, the system LaxGdyBi1−(x+y)FeO3 exhibits highest remanent magnetization (Mr) of 0.18 emu/g and coercive magnetic field (HC) of ~1 T in the presence of external magnetic field of 9 T at 300 K. The origin of enhanced dielectric and magnetic properties of LaxGdyBi1−(x+y)FeO3 and the role of doping elements, La3+, Gd3+ has been discussed.  相似文献   

12.
Gd2O3 was added to increase the properties of corundum–mullite ceramic composites by enhancing the microstructural densification using coal-series kaolin and α-Al2O3. The effect of Gd2O3 addition on the microstructure and properties of ceramic composites was explored. The results showed that the formation of Gd2O3–Al2O3–SiO2 liquid phase could improve the bending strength, hardness, and acid resistance, since such liquid phase promoted microstructural densification via a reaction between Gd2O3 and Al2O3–SiO2 binary system in this Al2O3-rich and SiO2-poor system. The precipitation of mullite and gadolinium disilicate during thermal shocks resulted in enhanced bending strength. In particular, sample AG5 (80 wt% Al2O3, 20 wt% coal-series kaolin, and 5 wt% additional Gd2O3) sintered at 1550 °C was considered as candidate for heat transmission pipeline for the optimum comprehensive performance.  相似文献   

13.
Nanometric-sized gadolinia (Gd2O3) powders were obtained by applying solid-state displacement reaction at room temperature and low temperature calcination. The XRD analysis revealed that the room temperature product was gadolinium hydroxide, Gd(OH)3. In order to induce crystallization of Gd2O3, the subsequent calcination at 600  1200 °C of the room temperature reaction products was studied. Calculation of average crystallite size (D) as well as separation of the effect of crystallite size and strain of nanocrystals was performed on the basic of Williamson-Hall plots. The morphologies of powders calcined at different temperatures were followed by scanning electron microscopy. The pure cubic Gd2O3 phase was made at 600 °C which converted to monoclinic Gd2O3 phase between 1400° and 1600 °C. High-density (96% of theoretical density) ceramic pellet free of any additives was obtained after pressureless sintering at 1600 °C for 4 h in air, using calcined powder at 600 °C.  相似文献   

14.
A correlation between the 155Gd M?ssbauer spectra of the GdAlO3 and Gd3Al5O12 compounds and Gd3+-doped glasses in the (BaGeO3)1 − xy (Al2O3) x (0.45CaF2 · 0.55MgF2) y system is revealed. The conclusion is drawn that, in the structure of the glasses under investigation, trivalent gadolinium atoms form structural units characteristic of mixed gadolinium and aluminum oxides. Original Russian Text ? S.A. Nemov, A.V. Marchenko, P.P. Seregin, 2008, published in Fizika i Khimiya Stekla.  相似文献   

15.
Magnetic nanoparticle (MNP)-based magnetic resonance imaging (MRI) contrast agents (CAs) have been the subject of extensive research over recent decades. The particle size of MNPs varies widely and is known to influence their physicochemical and pharmacokinetic properties. There are two commonly used methods for synthesizing MNPs, organometallic and aqueous solution coprecipitation. The former has the advantage of being able to control the particle size more effectively; however, the resulting particles require a hydrophilic coating in order to be rendered water soluble. The MNPs produced using the latter method are intrinsically water soluble, but they have a relatively wide particle size distribution. Size-controlled water-soluble MNPs have great potential as MRI CAs and in cell sorting and labeling applications. In the present study, we synthesized CoFe2O4 MNPs using an aqueous solution coprecipitation method. The MNPs were subsequently separated into four groups depending on size, by the use of centrifugation at different speeds. The crystal shapes and size distributions of the particles in the four groups were measured and confirmed by transmission electron microscopy and dynamic light scattering. Using X-ray diffraction analysis, the MNPs were found to have an inverse spinel structure. Four MNP groups with well-selected semi-Gaussian-like diameter distributions were obtained, with measured T2 relaxivities (r2) at 4.7 T and room temperature in the range of 60 to 300 mM−1s−1, depending on the particle size. This size regulation method has great promise for applications that require homogeneous-sized MNPs made by an aqueous solution coprecipitation method. Any group of the CoFe2O4 MNPs could be used as initial base cores of MRI T2 CAs, with almost unique T2 relaxivity owing to size regulation. The methodology reported here opens up many possibilities for biosensing applications and disease diagnosis.

PACS

75.75.Fk, 78.67.Bf, 61.46.Df  相似文献   

16.
Gadolinium zirconate is a promising next-generation thermal barrier coating material and its CaO-MgO-Al2O3-SiO2 (CMAS) resistance needs to be further increased. In this study, three gadolinium zirconate coatings with different Gd/Zr ratios are successfully prepared via atmospheric plasma spray using amorphous feedstock. Their mechanical properties and corrosion resistance are investigated. The Young’s moduli and hardness of as-sprayed coatings are comparable with the gadolinium zirconate coatings reported in previous literature. Furthermore, the higher Gd content promotes the formation of the Gd-apatite and the depletion rate of CMAS corrosion. As a result, the infiltration depth of Gd2.3Zr1.7O6.85 coating after 24 h annealing decreases up to 35 % compared with those of Gd2.0Zr2.0O7.0 and Gd1.8Zr2.2O7.1, exhibiting an enhanced long-term corrosion resistance. This work develops a viable fabrication method to produce non-stoichiometric gadolinium zirconate coatings with tailorable CMAS corrosion resistance and is expected to promote the future design of thermal barrier coatings with long service life.  相似文献   

17.
《Ceramics International》2016,42(6):6673-6681
Polycrystalline samples of scheelite-type Cd1−3xxGd2x(MoO4)1−3x(WO4)3x solid solution with limited homogeneity (0<x≤0.25) and cationic vacancies (denoted as ⌷) have successfully prepared by a high-temperature annealing of CdMoO4/Gd2(WO4)3 mixtures composed of 50.00 mol% and less of gadolinium tungstate. Initial reactants and obtained ceramic materials were characterized by XRD, simultaneous DTA–TG, and SEM techniques. A phase diagram of the pseudobinary CdMoO4–Gd2(WO4)3 system was constructed. The eutectic point corresponds to 1404±5 K and ~70.00 mol% of gadolinium tungstate in an initial CdMoO4/Gd2(WO4)3 mixture. With decreasing of Gd3+ content in a CdMoO4 framework, the melting point of Cd1−3xxGd2x(MoO4)1−3x(WO4)3x increases from 1406 (x=0.25) to 1419 K (x=0.0833), and next decreases to 1408 K (x=0). EPR method was used to identify paramagnetic Gd3+ centers in Cd1−3xxGd2x(MoO4)1−3x(WO4)3x for different values of x parameter as well as to select biphasic samples containing both Cd0.250.25Gd0.50(MoO4)0.25(WO4)0.75 and Gd2(WO4)3.  相似文献   

18.
The effect of Gd2O3-doping on the crystal structure, surface morphology and chemical composition of the Gd2O3–HfO2 system is reported. Gd2O3–HfO2 ceramics with variable composition were prepared by varying the Gd2O3 composition in the range of 0–38 mol% balanced HfO2. X-ray diffraction (XRD) analysis indicates that the Gd2O3 concentration influences the crystal structure of the Gd2O3–HfO2 ceramics. Pure HfO2 and Gd2O3 crystallize in monoclinic and body centered cubic structure, respectively. The Gd2O3–HfO2 ceramics exhibit mixed monoclinic and fluorite structure when the Gd2O3 concentration is varied from 4 to 12 mol%. At 20 mol% of Gd2O3, existence of only the fluorite phase was found. Increasing the Gd2O3 concentration to 38 mol% results in the formation of single-phase pyrochlore Gd2Hf2O7 (a = 5.258 Å).  相似文献   

19.
We have developed novel gold-silver alloy nanoshells as magnetic resonance imaging (MRI) dual T1 (positive) and T2 (negative) contrast agents as an alternative to typical gadolinium (Gd)-based contrast agents. Specifically, we have doped iron oxide nanoparticles with Gd ions and sequestered the ions within the core by coating the nanoparticles with an alloy of gold and silver. Thus, these nanoparticles are very innovative and have the potential to overcome toxicities related to renal clearance of contrast agents such as nephrogenic systemic fibrosis. The morphology of the attained nanoparticles was characterized by XRD which demonstrated the successful incorporation of Gd(III) ions into the structure of the magnetite, with no major alterations of the spinel structure, as well as the growth of the gold-silver alloy shells. This was supported by TEM, ICP-AES, and SEM/EDS data. The nanoshells showed a saturation magnetization of 38 emu/g because of the presence of Gd ions within the crystalline structure with r1 and r2 values of 0.0119 and 0.9229 mL mg-1 s-1, respectively (Au:Ag alloy = 1:1). T1- and T2-weighted images of the nanoshells showed that these agents can both increase the surrounding water proton signals in the T1-weighted image and reduce the signal in T2-weighted images. The as-synthesized nanoparticles exhibited strong absorption in the range of 600-800 nm, their optical properties being strongly dependent upon the thickness of the gold-silver alloy shell. Thus, these nanoshells have the potential to be utilized for tumor cell ablation because of their absorption as well as an imaging agent.  相似文献   

20.
Single-phase superfine refractory oxides of composition La2?xGdxZr2O7 (x = 0, 0.5, 1, 1.5, 2) have been synthesized using glycol-citrate route. Dependencies of degree of dispersion and phase composition on chemical composition for such oxides were determined. Fluorite-pyrochlore transition observed during thermal treatment of these oxides was examined. It was stated that this transition occurred in the temperature range 1000–1200?°C for all formulations with exception of gadolinium zirconate Gd2Zr2O7 which kept the fluorite structure even after long-term exposure (4?h) at a temperature of 1400?°С. Samples of corresponding ceramics which density amount to 95–98% of the theoretical value were obtained using FAST/SPS process. Coefficients of linear thermal expansion (CLTE) of manufactured materials were measured. It was found that CLTE values for all samples except for gadolinium zirconate were independent of temperature in the range 400–1000?°C. It was shown that Gd2Zr2O7 kept the fluorite structure under conditions of FAST/SPS process at a temperature of 1600?°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号