首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Highly efficient inverted organic light-emitting diodes (iOLEDs) are reported by including in the structure a surface modifier, polyethylenimine-ethoxylated (PEIE), to decrease the cathode work function and a hole blocking layer, 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBi) to increase the efficiency of the device. The two compounds have been processed in a single step, by using a mixture PEIE:TPBi spun from the same solution. It is demonstrated by time-of-flight secondary-ion mass spectrometry (TOF-SIMS) that a bilayer is formed and same performances as the separately processed materials are obtained. This technic enables to reach high luminances (40 000 cd m−2) and high current efficiencies (13 cd/A) using the conjugated Super Yellow (SY) polymer as the emissive layer while reducing the number of processing steps.  相似文献   

2.
Here we describe the use of a polymer zwitterion as a solution-processable material that serves as the key component of the electron injection layer (EIL) in solution processed organic light-emitting diodes (OLEDs). Poly(sulfobetaine methacrylate) (PSBMA) was employed in both regular and inverted device configurations as a work-function modifier for Al and ZnO cathodes, respectively. For both architectures, PSBMA significantly improved the OLED performance when compared to reference devices without EIL in terms of turn-on voltage and luminance. In inverted devices, PSBMA showed a passivation effect on ZnO surface trap states, producing better performing and more stable devices.  相似文献   

3.
The performance of inverted quantum-dot light-emitting diodes(QLEDs) based on solution-processed hole transport layers(HTLs) has been limited by the solvent-induced damage to the quantum dot(QD) layer during the spin-coating of the HTL. The lack of compatibility between the HTL’s solvent and the QD layer results in an uneven surface, which negatively impacts the overall device performance. In this work, we develop a novel method to solve this problem by modifying the QD film with 1,8-diaminoocta...  相似文献   

4.
有机发光器件中空穴注入对负电容的影响   总被引:1,自引:1,他引:0  
对不同结构的有机发光器件(OLED)进行了电容-电压(C-V)特性测量,研究了不同空穴注入结构对OLED负电容的影响。结果表明,负电容的产生与OLED内部电场的分布有着密切的关系,负电容开始出现的频率与电压的平方根呈指数关系。与超薄的单层空穴注入层相比,掺杂的空穴注入层不仅能降低器件的驱动电压,而且其载流子传输特性和出现负电容时的初始电压对频率有着更强的依赖性。  相似文献   

5.
《Organic Electronics》2008,9(5):805-808
Efficient top-emitting organic light-emitting diodes were fabricated using copper iodide (CuI) doped 1,4-bis[N-(1-naphthyl)-N′-phenylamino]-4,4′-diamine (NPB) as a hole injection layer and Ir(ppy)3 doped CBP as the emitting layer. CuI doped NPB layer functions as an efficient p-doped hole injection layer and significantly improves hole injection from a silver bottom electrode. The top-emitting device shows high current efficiency of 69 cd/A with Lambertian emission pattern. The enhanced hole injection is originated from the formation of the charge transfer complex between CuI and NPB.  相似文献   

6.
Polythienothiophene:poly(perfluoroethylene-perfluoroethersulfonic acid) (PTT:PFFSA) has been used to enhance hole injection into small molecule OLEDs. Compared to devices with polyethylene dioxythiophene polystyrene sulfonate (PEDOT:PSS) as the hole injection layer (HIL), the OLED using PTT:PFFSA as a HIL gives enhanced efficiency and a slower luminance decay as well as a slower rise in operating voltage. Further studies of capacitance–voltage characteristics reveal that positive trapped charges accumulate in the hole transporting layer during operation. These results thus highlight the significance of hole injection layer to OLED operational stability.  相似文献   

7.
A new aqueous based polymer, Plexcore® OC AQ1200 (AQ1200) was used as a hole injection layer (HIL) in organic light emitting diodes (OLEDs) and the device results are compared with polyethylene dioxythiophene:polystyrene sulfonate (PEDOT:PSS) in terms of injection efficiency and stability. Dark injection transient measurements show a higher injection efficiency in hole-only devices using AQ1200 HIL compared with PEDOT:PSS. Using AQ1200 as an HIL, high efficiency phosphorescent OLEDs are demonstrated to have a long lifetime, with an estimated operational half lifetime (LT 50) of more than 8000 h from an initial luminance of 1000 cd/m2.  相似文献   

8.
Solution-processed small-molecule white organic light-emitting diodes (WOLEDs) were fabricated with a co-host of hole-transporter 4,4′,4″-Tris(carbazol-9-yl)triphenylamine (TCTA) and electron-transporter 2,7-Bis(diphenylphosphoryl)-9,9'-spirobifluorene (SPPO13). By doping 15 wt% FIrpic or F3Irpic and 0.5 wt% Ir(MDQ)2(acac) in to the TCTA/SPPO13 host, highly efficient white OLEDs have been achieved which exhibit nearly identical emission spectra at different luminance. The F3Irpic and Ir(MDQ)2(acac)-based WOLED shows maximum efficiencies of 40.9 cd/A, 36.7 lm/W and 16.9%, and even high efficiencies of 30.1 cd/A and 12.3% at the practical luminance of 1000 cd/m2, which are among the highest efficiencies of the solution-processed small-molecule WOLEDs. These results demonstrate a convenient way to realize solution-processed WOLEDs with high efficiency and high spectral stability through full small-molecule materials system.  相似文献   

9.
Nickel oxide (NiO), as a kind of p-type transition metal oxide (TMO) has shown promising applications in photoelectric devices. In our work, the NiO nanocrystals (NCs) are fabricated by a simple solvothermal method using tert-butyl alcohol and nickel acetylacetonate as precursors at 200 °C for different reaction times. The diameters and valence band edge of the prepared NiO NCs are increased with the increase reaction time from 12 h, 24 h–36 h. The band gaps of the NiO NCs were decreased with the increase time. Selected area electron diffraction (SAED) shows that the NiO NCs is polycrystalline structure. X-ray diffraction (XRD) indicates that the NiO NCs is cubic crystal form. X-ray photoelectron spectroscopy (XPS) shows that the as-prepared NiO NCs have a core of NiO and some form of Ni2O3 and NiOOH states on its surface. Further, the obtained NiO NCs is applied on quantum dot light-emitting diode (QLED) as hole injection layer (HILs), showing excellent hole injection properties. Particularly, the NiO NCs for 24 h obtains the best results due to its high band gap and pure cubic crystal phase. Highly bright orange-red QLED with peak luminance up to ∼25580 cd m−2, and current efficiency (CE) of 5.38 cd A−1 are achieved successfully based on the high performance NiO HIL, further, the device obtained relative long operational lifetime of 11491 h, which has been improved by more than 6- fold as compared to 1839 h for the device based on PEDOT.  相似文献   

10.
We report a solution-processed tungsten oxide hole injection layer for polymer light-emitting diodes (PLEDs). Unlike vacuum evaporated tungsten oxide, solution-processed tungsten oxide has a reduced work function due to contamination of the ambient atmosphere. To increase the work function of tungsten oxide layer, an organic ionic solution containing poly(ethylene oxide) and tetra-n-methylammonium tetrafluoroborate was coated on the tungsten oxide layer. Organic ions infiltrated into the tungsten oxide layer and formed an interfacial dipole, increasing the layer’s work function by 0.4 eV. As a result, a PLED, which had a hole-injection layer of the tungsten oxide and organic ionic solution, showed a performance equivalent to that of the PEDOT:PSS-based device with even higher maximum luminance of 27,560 cd/m2 at 10 V.  相似文献   

11.
In this study we demonstrate an easy solution-processed highly efficient deep-blue polymer light-emitting diode (PLED) via a simple one-step coating of self-assembly hole injection/transport nanocomposites to achieve both a finer hole ohmic contact and an increased light outcoupling, which is the first time report about both the optical and electrical optimization without necessitating changes in the design or structure of the wide bandgap deep-blue PLEDs themselves. The contact angle and surface energy measurement results demonstrate that triazine-based hole injection molecules can vertically migrate towards the bottom PEDOT:PSS layer to obtain a stable minimum of free energy, resulting in an optimal top-to-bottom HOMO energy level arrangement and an improved hole mobility in deep-blue PLEDs. The random surface nanostructure was formed on top of the hole bilayer, leading to the enhancement of light outcoupling verified by transmittance, transmittance haze and light extraction efficiency. Furthermore, in order to explore the reasons of the hole light scattering formation process, a transient drying monitoring technique is applied to track the drying process of the nanostructure films, revealing this approach effectiveness by easily modifying mixing ratios for obtaining different light outcoupling abilities.  相似文献   

12.
Metal oxides as ZnO provide an interesting alternative for conventional low work function metals as electron injection layer in organic light-emitting diodes (OLEDs). However, for most state-of-the-art OLED materials the high work function of ZnO leads to a large injection barrier for electrons. As a result the electron current in the OLED is largely limited by the contact, leading to a strong reduction of the conversion efficiency. Here we demonstrate that by depositing an amorphous ZnO layer as cathode in an inverted polymer LED, the electron injection can be strongly enhanced by electrical conditioning. For suited polymers comparable conversion efficiencies of the conventional and inverted PLEDs can be achieved.  相似文献   

13.
Two polymeric hosts PCzTPP and PCzTPPO with twisted geometrical configurations for blue phosphorescent polymer light-emitting diodes (PhPLEDs) were designed and synthesized by incorporating electron-accepting carbazole units with electron-donating TPP/TPPO groups. This molecular design endows PCzTPP and PCzTPPO with high glass transition temperatures of 204 °C and 215 °C, high triplet energies of 2.72 eV and bipolar features. In addition, the HOMO and LUMO of these polymers matched well with the HOMO of the hole-transport layer and the Fermi level of cathode compared with PVK, which facilitated the injection of holes and electrons. PCzTPP- and PCzTPPO-based single-emissive-layer blue PhPLEDs were fabricated with simplified device configuration by solution process using FIrpic as a dopant. These devices exhibited lower turn on voltages (<8 V) than PVK-based devices (12 V). The maximum luminances of PCzTPP- and PCzTPPO-based devices were twofold and threefold that of PVK-based devices, and the maximum current efficiencies were nearly threefold and ninefold, respectively. Moreover, PCzTPPO-based solution processed blue PhPLEDs with improved configuration showed maximum current efficiency and external quantum efficiency of 14.5 cd/A and 6.6%, respectively.  相似文献   

14.
Solvent treatment was discovered as an efficient anode modification approach to improve the performance of polymer light-emitting diodes. By simply spin-coating several drops of the polar solvent on top of the PEDOT:PSS hole injection layer, the maximum luminance efficiency was increased by as much as 83% without sacrificing the operation voltage. The combination effects of the reduced work function and the lowered resistivity of PEDOT:PSS film, decreased the hole leakage current, leading to a more balanced charge density inside the emission layer, thereby enhancing the device performance.  相似文献   

15.
In this paper, we report on the lifetime of polymer LEDs fabricated at Philips Research. For single-layer LEDS, we find that the operational lifetime in nitrogen gas is limited by the stability of the indium-tin-oxide (ITO) anode. By using a polymeric capping layer for the ITO, we obtain more stable devices. In air, the lifetime is limited by black spot formation. Small pinholes in the cathode layer are the origins of the black spots. Water or oxygen may diffuse through these pinholes and react with the cathode, causing degradation. By encapsulating the devices we can prevent black spot formation. Our present 8 cm2 devices have lifetimes of many thousands of hours at daylight visibility under ambient conditions.  相似文献   

16.
Easy processing and mechanical flexibility make polymer light-emitting diodes (PLEDs) suitable candidates for large-area display applications. The understanding of the device properties of PLEDs is a key ingredient for further optimization. This article reviews a device model developed at Philips Research that describes the current and light generation of PLEDs as a function of applied voltage. The model is based on experiments carried out on poly(dialkoxy-p-phenylene vinylene) devices. The combination of the experimental results and model calculations have revealed that (1) the hole current is dominated by space-charge effects and a field-dependent mobility, (2) the electron current is strongly reduced by traps, and (3) the recombination process between the injected electrons and holes is of the Langevin-type. These results explain specific device properties of PLEDs such as a bias-dependent and temperature-independent electroluminescence efficiency (photon/carrier) and indicate directions for further improvement of the device performance.  相似文献   

17.
《Organic Electronics》2014,15(6):1077-1082
This study demonstrates the incorporation of a Cs2CO3:conjugated polyelectrolyte blended interfacial layer between the emissive layer and a silver (Ag) cathode, for realizing all-solution processed polymer light-emitting diodes. For a device with poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as the emissive layer, this approach improves the maximum luminance of approximately 80,000 cd/m2 and maximum current efficiency of 10.6 cd/A. It is clarified that the interfacial layer prevents Ag nanoparticles from penetrating into the emissive layer, resulting in yellow–green emission from F8BT. We also demonstrate the possibility of all-solution processed polymer light-emitting diodes utilizing solution-processed Cs2CO3:conjugated polyelectrolyte interfacial layer and Ag nano-ink.  相似文献   

18.
An analysis of blue and near-ultraviolet (UV) light-emitting diodes (LEDs) and material structures explores the dependence of device performance on material properties as measured by various analytical techniques. The method used for reducing dislocations in the epitaxial III-N films that is explored here is homoepitaxial growth on commercial hybride vapor-phase epitaxy (HVPE) GaN substrates. Blue and UV LED devices are demonstrated to offer superior performance when grown on GaN substrates as compared to the more conventional sapphire substrate. In particular, the optical analysis of the near-UV LEDs on GaN versus ones on sapphire show substantially higher light output over the entire current-injection regime and twice the internal quantum efficiency at low forward current. As the wavelength is further decreased to the deep-UV, the performance improvement of the homoepitaxially grown structure as compared to that grown on sapphire is enhanced.  相似文献   

19.
High efficiency, solution-processed, red emissive phosphorescent organic light-emitting diodes (PhOLEDs) have been developed. The PhOLEDs utilize bis[9-ethyl-3-(4-phenylquinolin-2-yl)-9H-carbazolato-N,C2′]iridium picolinate (Et-Cvz-PhQ)2Ir(pic) and bis[9-(2-(2-methoxyethoxy)ethyl)-3-(4-phenylquinolin-2-yl)-9H-carbazolato-N,C2′]iridium picolinate (EO-Cvz-PhQ)2Ir(pic) in a nonconjugated polymer host of PVK that contains the electron transport material of OXD-7 and the hole transport material TPD. The electroluminescence (EL) spectra of the PhOLEDs parallel those of (Et-Cvz-PhQ)2Ir(pic) and (EO-Cvz-PhQ)2Ir(pic) with maxima at 608 nm and a CIE (Commission International de l’Eclairage) coordinate of (0.62, 0.38). The red emitting PhOLEDs, based on ITO/PEDOT:PSS/PVK:OXD-7:TPD:Ir complex/cathode configuration, have a maximum external quantum efficiency of 10.6% and a luminance efficiency of 17.5 cd/A. The efficiency is significantly higher than those obtained using common solution-processed red emissive PhOLEDs.  相似文献   

20.
Solution-processed colloidal quantum dot light-emitting diodes (QLED) have attracted many attentions with significant progress in recent years. However, QLED devices still face some challenges. The energy barrier between Cd-base quantum dots (QDs) and commonly used hole transport materials is larger than that between QDs and electron transport materials, which leads to the imbalance of carriers in the light emitting layer (EML) and the low performance of QLED devices. Herein, we report a simple strategy to improve the device performance by doping small molecule transport material 4,4′-cyclohexylidenebis[N,N-bis(p-tolyl)aniline] (TAPC) into red CdSe/ZnS QDs. The optimized red QLED devices with TAPC-doped emissive layer at a ratio of 3.2 wt% achieve 20.0 cd/A of maximum current efficiency, 16.6 lm/W of power efficiency and 15.7% of external quantum efficiency, which is 30%, 58% and 33% higher than the control device. The improved performance of devices can be ascribed to the increase of hole current density, decrease of leakage electrons and more balanced quantity of carriers in EML. This work put forward a viewpoint to improve the performance of QLED devices via doping high hole mobility materials into emission layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号