首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用FactSage软件对28MnCr5钢液和镁铝尖晶石夹杂物的平衡反应进行了分析,当w[Al]在0.02%~0.04%之间,w[Mg](0.39~0.42)×10-6的临界范围时开始生成镁铝尖晶石。计算发现:在现有28MnCr5钢精炼工艺条件下,钢液中会不可避免生成镁铝尖晶石夹杂物。当钢液w[Mg]8.5×10-6时,加入钙不能使其转变成低熔点液态夹杂物;而当钢液w[Mg]小于此值时,增加w[Ca]时,夹杂物按照"镁铝尖晶石→CaO-Al2O3-MgO系液态夹杂物→CaO"路径转变,钢液w[Ca]增加至3×10-6左右时均能将其转化为CaO-Al2O3-MgO系液态夹杂物。计算表明,精炼渣还原提供的[Ca]不能使28MnCr5钢中镁铝尖晶石夹杂物完全变性,须采用向钢液中喂钙线等手段来提高钢液中的钙含量。  相似文献   

2.
王昆鹏  王郢  谢伟  徐建飞  陈廷军  姜敏 《钢铁》2023,58(1):108-115
 钢中尖晶石夹杂物不仅会恶化钢的可浇性,还可能导致成品出现宏观夹杂物,RH真空处理是去除钢中夹杂物的重要环节。对RH真空处理过程高碳铬轴承钢夹杂物数量、成分和类型变化开展研究,通过热力学计算讨论了真空压力对高碳铬轴承钢尖晶石夹杂物稳定性的影响。试验结果表明,当真空压力为30 Pa时,真空处理10 min,钢液循环总量达200~400 t,尖晶石夹杂物全部消失。真空处理15 min,夹杂物总数大幅降低,由480个/(200 mm2)降至97个/(200 mm2),夹杂物总数减少80%。真空处理后,钢中液态夹杂物数量增加且夹杂物呈高度液态化,与真空处理前相比,液态夹杂物的数量由44个/(200 mm2)增至71个/(200 mm2),增加61%,液态夹杂物占比由9%增至73%。尖晶石夹杂物全程为单一颗粒状,未发现其碰撞、聚集现象。热力学计算表明,真空条件下,高碳铬轴承钢中尖晶石夹杂物可被钢中碳还原分解,温度为1 600 ℃时,临界分解压力为16 000~22 000 Pa,真空度越高,越有利于尖晶石夹杂物的还原分解。真空压力为4 900 Pa时,真空处理7~14 min,钢液循环总量达511~1 022 t,尖晶石夹杂物即完全消失;真空度为20 400 Pa时,即便延长处理时间至40 min,将钢液循环总量增至2 360 t,尖晶石夹杂物仍存在。与夹杂物被“物理去除”的观点相比,真空条件下,尖晶石夹杂物被钢中碳还原分解能更好地解释真空过程尖晶石夹杂物的变化特征。  相似文献   

3.
为了尽可能的去除钢中大颗粒的夹杂物, 在实验条件下通过向GCr15轴承钢中添加适量镁、稀土对夹杂物进行改性, 并利用Aspex夹杂物自动分析仪和扫描电镜对钢中改性后的夹杂物尺寸、类型、形貌等进行了观察、分析, 研究了稀土-镁复合处理对夹杂物的影响规律.研究结果表明, 对轴承钢中加入微量镁处理, 可将未进行镁处理钢中的MnS-Al2O3、MnS、Al2O3夹杂改性为以含硫、镁复合夹杂物为主, 同时包含少量Al2O3、镁铝尖晶石夹杂.进一步采用稀土-镁复合处理后, 钢中的夹杂物转变为主要以含Re-S-O夹杂物为主, Al2O3、MnS、镁铝尖晶石夹杂逐步消失, 且夹杂物成球状分布, 绝大多数夹杂物在5 μm以下.稀土-镁复合处理轴承钢后, 10 μm以上的大颗粒夹杂物大大降低, 钢中的夹杂物明显得到细化.钢中镁含量不变时, 随着稀土含量的增加, 大颗粒夹杂物比例明显下降.而在稀土含量相近的情况下, 增加钢中的镁含量也有利于大颗粒夹杂物的去除.稀土-镁的相互作用进一步促进了夹杂物的细化.   相似文献   

4.
当前在轴承钢中氧含量已经能够控制在极低水平的情况下,Ds类夹杂物成为影响其质量稳定性的主要因素之一。为解决这一问题,本研究提出了利用非铝脱氧工艺,不使用铝作为脱氧剂,而采用硅锰预脱氧、渣面扩散脱氧、真空终脱氧、精炼过程造低碱度渣的方式生产GCr15轴承钢。与传统铝脱氧生产工艺相对比,非铝脱氧工艺轴承钢中主要夹杂物为硅酸盐,含有少量钙铝硅复合夹杂物,减少了形成Ds类夹杂物的镁铝尖晶石和钙铝酸盐,显著降低了Ds类夹杂物的含量,在轧材中能够将Ds类夹杂物稳定控制在0.5级以下,评级为0级的样品占比高达91.67%。该工艺能够获得稳定的生产效果和产品质量,并为高品质轴承钢生产提供理论及技术指导。  相似文献   

5.
通过石油套管钢的工业试验及热力学分析,研究精炼过程中镁铝尖晶石的形成和改性机理。结果表明:当钢液中溶解铝分别为0.02%和0.05%时,溶解镁只要达到1.5×10-6和2.8×10-6,钢中便有镁铝尖晶石生成;钢液中溶解铝0.02%,镁含量为4×10-6~8×10-6时,钢中溶解钙含量只要分别达到0.21×10-6和0.42×10-6,钢液中的镁铝尖晶石便开始向液态钙铝酸盐转变;镁铝尖晶石比氧化铝更容易改性为液态夹杂物;钢液精炼过程中夹杂物受钢渣反应和钙处理的影响,按照Al2O3→MgO-Al2O3系夹杂物→Ca O-Al2O3-MgO或Ca O-Al2O3系液态复合夹杂物的过程演变。  相似文献   

6.
通过FactSage 6.0热力学软件计算,研究了合金钢中镁铝尖晶石(MgO.Al2O3)形成和向低熔点复合夹杂物转化的热力学条件,以及钙处理对钢液成分和夹杂物成分的影响.研究结果表明:钢中生成镁铝尖晶石夹杂物需要镁的含量较低;当钢液中溶解钙的质量分数为1×10-6时,镁铝尖晶石会转化变成液态的复合夹杂物;随着钙加入量的增加,液态复合夹杂物中Al2O3和MgO的含量继续降低,CaO的含量继续增加,SiO2的含量较低,基本保持不变;随着钙加入量的增加,钢液中的氧含量会降低,镁含量增加.  相似文献   

7.
轴承钢对钢中非金属夹杂物, 尤其是对D类夹杂物的要求非常严格.为了分析国内某钢厂GCr15轴承钢棒材试样探伤不合的D类夹杂物形成原因并提出有效控制措施, 采用ASPEX自动扫描电镜对GCr15轴承钢生产工艺优化前后全流程夹杂物的演变进行观察.研究结果表明, 原工艺下轴承钢中D类钙铝酸盐夹杂物生成的主要原因包括两个方面, 一是精炼渣碱度过高导致渣中Ca O活度很大;二是在真空脱气 (VD) 精炼过程中, 强烈搅拌给钢-渣反应提供了良好的动力学条件.本文从精炼渣碱度和VD真空度两方面对轴承钢生产工艺进行了优化.优化后能够在保持高洁净度情况下, 使钢中夹杂物由钙铝酸盐类转变为镁铝尖晶石类, 减少了轴承钢中D类夹杂物的生成.  相似文献   

8.
从转炉出钢到连铸各个关键工序,采用示踪的方法系统研究了淮钢长流程(转炉-精炼-真空处理-连铸-轧制)生产的轴承钢中非金属夹杂物来源,重点对精炼、真空处理、连铸3个关键工序钢液中非金属夹杂物情况进行取样分析。结果表明,淮钢长流程生产的轴承钢非金属夹杂物类型为氧化铝、钙铝酸盐、镁铝尖晶石和二氧化硅,非金属夹杂物主要来源于精炼内生、二次氧化和精炼搅拌卷渣或连铸钢包下渣,其中大颗粒非金属夹杂物主要来源于钢包卷渣或连铸钢包下渣,大颗粒非金属夹杂物类型主要为铝酸钙。  相似文献   

9.
为了探讨低氧特殊钢中大尺寸DS类夹杂物的生成机理,通过ASPEX PSEM explorer自动扫描电镜对比分析国内外低氧特殊钢试样中夹杂物特征(国内、外试样各两个),发现国内试样中夹杂物平均尺寸大于国外试样,夹杂物的最大尺寸则数倍于国外试样:国内试样中夹杂物的最大尺寸分别为24.9和13.1μm,国外试样分别为7.6和7.5μm.对比国内外特钢试样中大尺寸与小尺寸夹杂物可发现二者成分基本相同,推断大尺寸DS类夹杂物可能是细小夹杂物碰撞长大而形成.通过分析大尺寸夹杂物的可能来源,在实验室通过高温共聚焦激光扫描显微镜观察夹杂物在钢中固/液相界面处的行为.结果发现,总氧降低至7×10-6时,尺寸5μm以下的微细夹杂物可被固/液相界面所捕捉,并在固/液相界面处发生碰撞、聚集、长大而生成大尺寸(>12μm)DS类夹杂物.  相似文献   

10.
高速重轨钢中尖晶石夹杂物的形成及控制   总被引:1,自引:0,他引:1  
储焰平  谌智勇  刘南  张立峰 《钢铁》2020,55(1):38-46
 高速重轨钢采用无铝脱氧工艺,但是钢中常发现大颗粒纯的MgO-Al2O3夹杂物,严重影响产品质量。为了明确高速重轨钢中尖晶石夹杂物的来源,进一步控制重轨钢中夹杂物,通过对重轨钢拉伸断口进行分析,结合水口结瘤物分析、热力学计算及典型夹杂物分析,系统研究了高速重轨钢中尖晶石夹杂物的形成机理。结果表明,重轨钢中的尖晶石夹杂物分为单独存在的尖晶石和钙铝酸盐包裹的尖晶石两类。其中钙铝酸盐包裹的尖晶石为CaO-SiO2-Al2O3-MgO复合夹杂物在降温冷却过程中析出,析出温度与夹杂物中Al2O3和MgO质量分数有关;单独存在的小尺寸尖晶石夹杂物为钢液凝固冷却过程中析出,与钢液成分有关。此外,研究还表明,水口结瘤也是重轨钢中出现大颗粒镁铝尖晶石夹杂物的重要原因之一。因此,严格控制合金辅料中Mg、Als等杂质元素质量分数,防止钢液发生二次氧化、降低耐火材料侵蚀等,尽可能降低夹杂物中的Al2O3和MgO质量分数,对控制重轨钢中尖晶石夹杂物,提高产品质量至关重要。  相似文献   

11.
 QD08钢因其特殊的工作环境,要求具有较高的抗疲劳特性,而Ds类夹杂物是削弱QD08钢抗疲劳性能的主要原因。为了探究Ds类夹杂物的形成原因及调控方法,解决Ds类夹杂物超标问题,对该钢种炼钢-精炼-连铸全流程进行取样分析。分析结果表明,影响QD08钢疲劳性能的Ds类夹杂物主要成分为CaS-Al2O3-MgO-CaO,其尺寸在15~30 μm范围内波动,主要在LF精炼钙处理操作后开始出现。QD08钢中Ds类夹杂物是以钙镁铝酸盐为核心骨架,外围包裹CaS而形成的。结合夹杂物的成分分布,确定了钢中钙含量高不利于QD08钢中Ds类夹杂物的控制,被改性后的夹杂物熔点低,与钢液润湿性强而难以穿过钢渣界面进入到渣中,且夹杂物在钢液中易聚合长大,造成夹杂物尺寸的增加,为Ds类夹杂物的形成提供了条件。提出在精炼环节采用高氧化钙溶解度精炼渣和微钙处理工艺优化方案,并进行了工业验证试验。通过微钙处理保证了必要的夹杂物改性,可防止水口结瘤,配合减小中间包液面的波动,控制合适的拉坯速度,可避免钢包下渣和卷渣现象的发生。控制更多的夹杂物成分分布在非液相区,抑制了夹杂物的碰撞长大,使得Ds类夹杂物等级降低。试验结果表明,QD08钢中影响其疲劳性能的Ds类夹杂物得到了控制,初检合格率由93.6%提高至98.0%,为企业带来了直接的经济利益。  相似文献   

12.
高碱度渣精炼的轴承钢中夹杂物研究   总被引:10,自引:0,他引:10  
于平  陈伟庆  冯军  郁昕 《钢铁》2004,39(7):20-23
对国内三个主要特殊钢厂和日本山阳特钢生产的轴承钢中夹杂物进行了研究。结果表明,在炉渣碱度较高(CaO/Sio2=3~4.5)的精炼条件下,低氧含量的轴承钢中夹杂物主要有:含Cr、Fe的复合MnS夹杂、TiN型夹杂、具有不同MgO含量的镁铝尖晶石夹杂;未发现单独存在的铝酸钙型球状夹杂物。随渣碱度提高和钢中氧含量降低,镁铝尖晶石夹杂物中的MgO含量增加。当渣中CaO/SiO2达4.5时,镁铝尖晶石夹杂物中含有CaO。  相似文献   

13.
邵肖静 《炼钢》2023,(4):82-87
为了比较液态和固态夹杂物的去除率,对比了管线钢冶炼过程中常见的四类典型夹杂物Al2O3、MgO-Al2O3、CaO-Al2O3-CaS、CaO-Al2O3在RH真空处理中的去除率。研究结果表明,钢液中的固态夹杂物比液态夹杂物更容易去除。为了得到液态夹杂物不易去除的原因,采用高温激光共聚焦扫描显微镜原位观察了CaO-Al2O3夹杂物在1 600℃钢液中的行为。结果表明,该类夹杂物不易发生聚合长大,随着温度的降低,夹杂物的尺寸进一步增加,其后被凝固基体捕捉。铸坯中大于等于20μm的CaO-Al2O3类夹杂物经轧制后延展就可以造成热轧板中大尺寸夹杂物超标。  相似文献   

14.
总结了高温共聚焦显微镜观察夹杂物在渣中溶解工作原理和非金属夹杂物溶解行为的研究现状和研究方法,探讨了未反应核模型和扩散方程2种常用于研究非金属夹杂物溶解的动力学模型,各类非金属夹杂物的溶解机制,温度、渣成分、夹杂物性质等影响非金属夹杂物溶解行为的因素,在前人研究的基础上得到不同夹杂物的溶解速率公式。指出该领域对于由钙铝酸盐、钙硅酸盐、镁铝尖晶石等由复合化合物构成的夹杂物颗粒研究较少,对铝脱氧钢和硅锰脱氧钢等生产中常用的精炼渣系的研究不够全面的问题,为今后其他学者在该领域的研究提供参考。  相似文献   

15.
为提升轴承钢品质,尽可能去除大型夹杂物,结合某钢厂轴承钢生产实际,采用大样电解方法分析了轴承钢中大型夹杂物类型,并结合引流砂检测结果分析了大型夹杂物的来源。结果表明,开浇时铸坯大型夹杂物总量比浇注中期明显偏高,但浇注中期的夹杂物种类与开浇铸坯中类似。铸坯中共发现5类大型夹杂物,其中铝酸钙大型夹杂物来源于钢液中的夹杂物;氧化铝、尖晶石和氧化钙大型夹杂物来源于引流砂;含少量K的TiO2-SiO2-FeO-CaO-Al2O3系复合夹杂物并非一定源自结晶器保护渣,也可能来源于引流砂及烧结产物。除了在精炼过程要尽可能地去除大尺寸的夹杂物,在连铸过程仍需采用有效措施,将引流砂及烧结产物排尽,才能有效提升轴承钢的产品质量。  相似文献   

16.
采用真空感应熔炼工艺冶炼航空轴承钢M50,对比分析了Ce处理、Mg处理和Ce–Mg复合处理对氧、硫含量和夹杂物分布特征的影响,结合热力学计算,阐明了加入Ce、Mg元素对钢液洁净度的影响机理。研究发现,Ce具有很强的脱氧、脱硫能力,加入Ce会优先生成Ce2O2S夹杂物,随着钢液中氧含量的降低,Ce还会与As等有害杂质元素结合,起到净化钢液的效果。过量的Ce会加剧其与镁铝尖晶石材质耐火材料的反应,导致钢中夹杂物数量的增加,Ce的质量分数为0.018%时,钢中夹杂物的尺寸和数量最小;添加Mg不仅可以脱氧、脱硫,还可以抑制Ce与镁铝尖晶石耐材的反应,Ce–Mg复合处理可以显著降低钢中的夹杂物的尺寸和数量,将钢中的氧的质量分数降低至0.00075%。   相似文献   

17.
通过电弧炉出钢加铝铁、硅铁脱氧,LF精炼初渣的组分为(/%:27.39~37.34Al_2O_3,38.42~38.68CaO,14.20~18.38SiO_2,8.50~10.72MgO,0.82~0.89FeO,0.27~0.33MnO,0.69~0.74S,0.66~0.75TiO_2,(CaO)/(SiO_2)=2.09~2.72,(CaO)/(Al_2O_3)=1.04~1.40),LF终点T[O]为0.001 2%~0.0019%,T[N]为0.004 3%~0.005 0%,[Ti]0.002%和[Ca]0.006%~0.009%。GCr15轴承钢LF精炼终点氧化物夹杂分析结果表明,钢中主要氧化物夹杂为镁铝尖晶石(MgO·Al_2O_3)和钙镁铝尖晶石氧化物(CaO·MgO·Al_2O_3)。镁铝尖晶石平均尺寸低于0.5μm,当有MnS、TiN等在其上析出后平均尺寸增大。钙镁铝尖晶石平均尺寸通常在2μm以上,在精炼温度下呈液态,易在钢中聚集长大,其尺寸(1.39~2.12μm)比固态的钙镁铝尖晶石-MnS夹杂物大,且更被精炼渣吸收并上浮去除。随着精炼过程钢液中的硫含量降低,以这两类尖晶石为核心的含MnS的复合夹杂物的平均尺寸降低。适当降低精炼终点渣中MgO的含量、光学碱度和黏度可以减少钢中夹杂物的数量并降低其平均尺寸。  相似文献   

18.
 为了提高国内油井管钢质量,采用扫描电镜对比了日本和国内油井管钢中夹杂物成分和形貌,统计了夹杂物尺寸分布、夹杂物间距和夹杂物分布等参数,基于FactSage热力学软件平衡凝固模型分析了冷却过程中夹杂物的演变过程,基于夹杂物碰撞数量平衡模型,讨论了油井管钢中夹杂物碰撞率。结果表明,日本油井管钢中夹杂物主要为CaS包裹的镁铝尖晶石,国内油井管钢中夹杂物主要为钙铝酸盐包裹的镁铝尖晶石夹杂物和纯镁铝尖晶石夹杂物。日本油井管钢夹杂物比国内油井管钢夹杂物数量少、尺寸小、分布更均匀。日本油井管钢中夹杂物数量密度达到7.5个/mm2,国内油井管钢中夹杂物数量密度达到28.3个/mm2。日本油井管钢中夹杂物最大尺寸不超过5 μm,国内油井管钢中夹杂物最大尺寸达到20 μm。FactSage计算冷却过程中夹杂物演变结果与试验结果吻合。国内油井管钢中夹杂物碰撞率比日本油井管钢中夹杂物的碰撞率高2个数量级。  相似文献   

19.
对我厂轴承钢铸态非金属夹杂物的鉴定分析是用金相法与电子探针法相结合完成的。10~(?)电弧炉氧化法冶炼的GCr15及GCr15SiMn610Kg锭型中,其脆性夹杂物和点状夹杂的化学成分组成相同,均是镁尖晶石为核心的铝酸钙,外包有硫化物包裹层的三层复合夹杂物。塑性夹杂物为硫化锰,也往往以镁尖晶石为结晶核心。  相似文献   

20.
杨俊  杜江  陈波涛  吴俊雄 《钢铁》2015,50(1):19-26
 研究了采用LF精炼顶渣控制技术对钢液进行超低氧冶炼时,钙处理对钢中非金属夹杂物的影响。试验在转炉出钢时采用铝终脱氧,LF精炼过程采用强脱氧、高碱度、强还原性精炼顶渣对钢液进行超低氧冶炼,比较了钙处理和不钙处理的钢液中非金属夹杂物转变的情况。结果表明,采用精炼顶渣控制技术冶炼超低氧钢时,钢液不需要进行钙处理就能实现铝脱氧产物Al2O3→MgO·Al2O3尖晶石→CaO-MgO-Al2O3类复合夹杂物的转变,得到炼钢温度下呈液态的复合氧化物夹杂,这些液态的夹杂物容易通过碰撞长大上浮去除,得到高洁净度的钢液,且残留在钢液的氧化物夹杂为较低熔点的复合氧化物,在浇注过程中不会产生水口结瘤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号