首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper develops a sliding-mode neural network controller for a class of unknown nonlinear discrete-time systems using a recurrent neural network (RNN). The control scheme is based on a linearized expression of the nonlinear system using a linear neural network (LNN). The control law is proposed according to the discrete L yapunov theory. With a modified real-time recurrent learning algorithm, the RNN as an estimator is used to estimate the unknown part in the control law in on-line fashion. The stability of the control system is guaranteed owing to the on-line learning ability of the RNN algorithm. The proposed control scheme is applied to numerical problems and simulation results that it is very effective.  相似文献   

2.
This paper presents an on-line learning adaptive neural control scheme for helicopters performing highly nonlinear maneuvers. The online learning adaptive neural controller compensates the nonlinearities in the system and uncertainties in the modeling of the dynamics to provide the desired performance. The control strategy uses a neural controller aiding an existing conventional controller. The neural controller is based on a online learning dynamic radial basis function network, which uses a Lyapunov based on-line parameter update rule integrated with a neuron growth and pruning criteria. The online learning dynamic radial basis function network does not require a priori training and also it develops a compact network for implementation. The proposed adaptive law provides necessary global stability and better tracking performance. Simulation studies have been carried-out using a nonlinear (desktop) simulation model similar to that of a BO105 helicopter. The performances of the proposed adaptive controller clearly shows that it is very effective when the helicopter is performing highly nonlinear maneuvers. Finally, the robustness of the controller has been evaluated using the attitude quickness parameters (handling quality index) at different speed and flight conditions. The results indicate that the proposed online learning neural controller adapts faster and provides the necessary tracking performance for the helicopter executing highly nonlinear maneuvers.  相似文献   

3.
This paper presents an off-line (finite time interval) and on-line learning direct adaptive neural controller for an unstable helicopter. The neural controller is designed to track pitch rate command signal generated using the reference model. A helicopter having a soft inplane four-bladed hingeless main rotor and a four-bladed tail rotor with conventional mechanical controls is used for the simulation studies. For the simulation study, a linearized helicopter model at different straight and level flight conditions is considered. A neural network with a linear filter architecture trained using backpropagation through time is used to approximate the control law. The controller network parameters are adapted using updated rules Lyapunov synthesis. The off-line trained (for finite time interval) network provides the necessary stability and tracking performance. The on-line learning is used to adapt the network under varying flight conditions. The on-line learning ability is demonstrated through parameter uncertainties. The performance of the proposed direct adaptive neural controller (DANC) is compared with feedback error learning neural controller (FENC).  相似文献   

4.
针对四旋翼无人机姿态控制中模型不完整、部分参数和扰动不确定的问题,提出了一种基于神经网络的自适应控制方法,采用RBF神经网络对无人机姿态动力学模型中不确定和扰动部分进行学习,设计了以类反步法为基础,包含反馈控制和神经网络控制的自适应控制器,实现了对未知动态的准确逼近,解决了传统控制方法中过于依赖精确模型的问题。同时设计了神经网络的权值自适应律,实现了控制过程中的在线学习和调整,并且通过李雅普诺夫方法证明了闭环系统的稳定性。仿真结果表明,在存在较大扰动的情况下,上述控制器可得到很好的控制效果,可以实现误差的快速收敛,具有较好的鲁棒性和自适应性。  相似文献   

5.
对控制面故障影响飞机运动的机理进行了推导,系统地阐述了控制面故障下的飞机运动建模方法。在建模的基础上,对故障系统的可重构性进行研究。分别从线性系统运动和物理运动两个方面,给出了可重构能力的评定方案。推导了误差反向传播的前向神经网络用于控制系统设计时满足Lyapunov稳定性的学习算法,提出了一种新型的采用反向传播神经网络补偿常规控制器的重构飞行控制设计方案。采用非线性飞机运动模型对控制器进行了仿真,验证了重构飞行控制器的性能。  相似文献   

6.
In the context of a robot manipulator, a generalized neural emulator over the complete workspace is very difficult to obtain because of dimensionally insufficient training data. A query based learning algorithm is proposed in this paper that can generate new examples where control inputs are independent of states of the system. This algorithm is centered around the concept of network inversion using an extended Kalman filtering based algorithm. This is a novel idea since robot manipulator is an open loop unstable system and generation of control input independent of state is a research issue for neural model identification. Two trajectory independent stable control schemes have been designed using the neural emulator. One of the control schemes uses forward-inverse-modeling approach to update the controller parameters adaptively following Lyapunov function synthesis technique. The proposed scheme is trajectory independent unlike the back-propagation scheme. The second type of controller predicts the minimum variance estimate of control action using recall process (network inversion) and the control law is derived following a Lyapunov function synthesis approach so that the closed loop system consisting of controller and neural emulator remains stable. The simulation experiments show that the model validation approach is efficient and the proposed control schemes guarantee stable accurate tracking.  相似文献   

7.
The paper presents an indirect adaptive neural control scheme for a general high-order nonlinear continuous system. In the proposed scheme a neural controller is constructed based on the single-hidden layer feedforward network (SLFN) for approximating the unknown nonlinearities of dynamic systems. A sliding mode controller is also incorporated to compensate for the modelling errors of SLFN. The parameters of the SLFN are modified using the recently proposed neural algorithm named extreme learning machine (ELM), where the parameters of the hidden nodes are assigned randomly. However different from the original ELM algorithm, the output weights are updated based on the Lyapunov synthesis approach to guarantee the stability of the overall control system, even in the presence of modelling errors which are offset using the sliding mode controller. Finally the proposed adaptive neural controller is applied to control the inverted pendulum system with two different reference trajectories. The simulation results demonstrate that good tracking performance is achieved by the proposed control scheme.  相似文献   

8.
This paper presents an adaptive control architecture, where evolutionary learning is applied for initial learning and real-time tuning of a fuzzy logic controller. The initial learning phase involves identification of an artificial neural network model of the process and subsequent development of a fuzzy controller with parameters obtained via a genetic search. The neural network model is utilized for evaluating trial fuzzy controllers during the genetic search. The proposed adaptive mechanism is based on the concept of perpetual evolution, where parameters of the fuzzy controller are updated at each time step with solutions extracted from a continuously evolving population of trials. There are two mechanisms that accommodate the real-time changes in the control task and/or the process into the continuous genetic search: a scheme that dynamically modifies the fitness evaluation criteria of the genetic algorithm, and an online learning of the neural network model used for evaluating the trial controllers. The potential of using evolutionary learning for real-time adaptive control is illustrated through computer simulations, where the proposed technique is applied to a chemical process control problem  相似文献   

9.
In this paper, an iterative learning controller using neural networks has been studied for the motion control of robotic manipulators. Simulations of a two-link robot have demonstrated that the proposed control scheme for robotic manipulators can greatly reduce tracking errors after a few trials. Our modification of the original back-propagation algorithm is employed in the neural network, resulting in a much faster learning rate. The results of simulation have also shown that the proposed iterative learning controller has a faster rate of convergence and better robustness.  相似文献   

10.
A hybrid control system using a recurrent fuzzy neural network (RFNN) is proposed to control a linear induction motor (LIM) servo drive. First, feedback linearization theory is used to decouple the thrust force and the flux amplitude of the LIM. Then, a hybrid control system is proposed to control the mover of the LIM for periodic motion. In the hybrid control system, the RFNN controller is the main tracking controller, which is used to mimic a perfect control law, and the compensated controller is proposed to compensate the difference between the perfect control law and the RFNN controller. Moreover, an online parameter training methodology, which is derived using the Lyapunov stability theorem and the gradient descent method is proposed to increase the learning capability of the RFNN. The effectiveness of the proposed control scheme is verified by both the simulated and experimental results. Furthermore, the advantages of the proposed control system are indicated in comparison with the sliding mode control system  相似文献   

11.
Wing rock is a highly nonlinear phenomenon in which an aircraft undergoes limit cycle roll oscillations at high angles of attack. In this paper, a supervisory recurrent fuzzy neural network control (SRFNNC) system is developed to control the wing rock system. This SRFNNC system is comprised of a recurrent fuzzy neural network (RFNN) controller and a supervisory controller. The RFNN controller is investigated to mimic an ideal controller and the supervisory controller is designed to compensate for the approximation error between the RFNN controller and the ideal controller. The RFNN is inherently a recurrent multilayered neural network for realizing fuzzy inference using dynamic fuzzy rules. Moreover, an on-line parameter training methodology, using the gradient descent method and the Lyapunov stability theorem, is proposed to increase the learning capability. Finally, a comparison between the sliding-mode control, the fuzzy sliding control and the proposed SRFNNC of a wing rock system is presented to illustrate the effectiveness of the SRFNNC system. Simulation results demonstrate that the proposed design method can achieve favorable control performance for the wing rock system without the knowledge of system dynamic functions.  相似文献   

12.
This work presents a novel integral variable structure control (IVSC) that combines a cerebellar model articulation controller (CMAC) neural network and a soft supervisor controller for use in designing single-input single-output (SISO) nonlinear system. Based on the Lyapunov theorem, the soft supervisor controller is designed to guarantee the global stability of the system. The CMAC neural network is used to perform the equivalent control on IVSC, using a real-time learning algorithm. The proposed IVSC control scheme alleviates the dependency on system parameters and eliminates the chattering of the control signal through an efficient learning scheme. The CMAC-based IVSC (CIVSC) scheme is proven to be globally stable inasmuch all signals involved are bounded and the tracking error converges to zero. A numerical simulation demonstrates the effectiveness and robustness of the proposed controller.  相似文献   

13.
针对三自由度全驱动船舶速度向量不可测问题,考虑船舶模型参数和外部环境扰动均未知的情况,提出一种基于神经网络观测器的船舶轨迹跟踪递归滑模动态面输出反馈控制方法.该方法设计神经网络自适应观测器估计船舶速度向量,且利用神经网络逼近模型参数不确定项,综合考虑船舶位置和速度误差之间关系构造递归滑模面,再采用动态面控制技术设计轨迹跟踪控制律和参数自适应律,并引入低频增益学习方法消除外界扰动导致的高频振荡控制信号.选取李雅普诺夫函数证明了该控制律能够保证轨迹跟踪闭环系统内所有信号的一致最终有界性.最后,基于一艘供给船进行仿真验证,结果表明,船舶轨迹跟踪响应速度快,所设计控制器对系统模型参数摄动及外界扰动具有较强的鲁棒性.  相似文献   

14.
This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control (AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance. To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control (ILC), a new boundary layer function is proposed by employing Mittag-Leffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function (CEF) containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.   相似文献   

15.
A direct adaptive neural control scheme for a class of nonlinear systems is presented in the paper. The proposed control scheme incorporates a neural controller and a sliding mode controller. The neural controller is constructed based on the approximation capability of the single-hidden layer feedforward network (SLFN). The sliding mode controller is built to compensate for the modeling error of SLFN and system uncertainties. In the designed neural controller, its hidden node parameters are modified using the recently proposed neural algorithm named extreme learning machine (ELM), where they are assigned random values. However, different from the original ELM algorithm, the output weight is updated based on the Lyapunov synthesis approach to guarantee the stability of the overall control system. The proposed adaptive neural controller is finally applied to control the inverted pendulum system with two different reference trajectories. The simulation results demonstrate good tracking performance of the proposed control scheme.  相似文献   

16.
针对一类不确定非线性系统, 提出一种变结构神经网络自适应鲁棒控制(Variable structure neural network adaptive robust control, VSNNARC)方法. 其中变结构神经网络用于在线辨识系统未知非线性函数, 该网络利用节点激活与催眠技术进行动态调节, 减小网络规模与计算量; 自适应鲁棒控制用于网络权值学习与系统建模误差及外部扰动补偿. 采用Lyapunov稳定性分析法, 给出网络权值自适应律的形式以及鲁棒控制项的设计方法. 该方法不仅能保证系统的稳定性, 也能保证系统具有很好的瞬态性能. 将该方法应用到转台伺服系统的位置跟踪控制中, 实际运行结果表明, 该方法使系统具有很强的鲁棒性及良好的跟踪效果.  相似文献   

17.
This paper presents deterministic learning from adaptive neural network control of affine nonlinear systems with completely unknown system dynamics. Thanks to the learning capability of radial basis function, neural network (NN), stable adaptive NN controller is designed for the unknown affine nonlinear systems. The designed adaptive NN controller is rigorously shown that learning of the unknown closed-loop system dynamics can be achieved during the stable control process because partial persistent excitation condition of some internal signals in the closed-loop system is satisfied. Subsequently, neural learning controller using the knowledge obtained from deterministic learning is constructed to achieve closed-loop stability and improve control performance. Numerical simulation is provided to show the effectiveness of the proposed control scheme.  相似文献   

18.
Neural networks for advanced control of robot manipulators   总被引:7,自引:0,他引:7  
Presents an approach and a systematic design methodology to adaptive motion control based on neural networks (NNs) for high-performance robot manipulators, for which stability conditions and performance evaluation are given. The neurocontroller includes a linear combination of a set of off-line trained NNs, and an update law of the linear combination coefficients to adjust robot dynamics and payload uncertain parameters. A procedure is presented to select the learning conditions for each NN in the bank. The proposed scheme, based on fixed NNs, is computationally more efficient than the case of using the learning capabilities of the neural network to be adapted, as that used in feedback architectures that need to propagate back control errors through the model to adjust the neurocontroller. A practical stability result for the neurocontrol system is given. That is, we prove that the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the NN bank and the design parameters of the controller. In addition, a robust adaptive controller to NN learning errors is proposed, using a sign or saturation switching function in the control law, which leads to global asymptotic stability and zero convergence of control errors. Simulation results showing the practical feasibility and performance of the proposed approach to robotics are given.  相似文献   

19.
The essence of intelligence lies in the acquisition/learning and utilization of knowledge. However, how to implement learning in dynamical environments for nonlinear systems is a challenging issue. This article investigates the deterministic learning (DL) control problem for uncertain pure‐feedback systems by output feedback, which achieves the human‐like learning and control in a simple way. To reduce the complexity of control design and analysis, first, by combining an appropriate system transformation, the original pure‐feedback system is transformed into a simple normal nonaffine system. An observer is then introduced to estimate the transformed system states. Based on the backstepping and dynamic surface control techniques, a simple adaptive neural control scheme is first developed to guarantee the finite time convergence of the tracking error using only one neural network (NN) approximator. Second, through DL, the exponential convergence of the NN weights is obtained with the satisfaction of partial persistent excitation condition. Thus, locally accurate approximation/learning of the transformed unknown system dynamics is achieved and stored as constant NNs. Finally, by utilizing the stored knowledge, an experience‐based controller is constructed and a novel learning control scheme is further proposed to improve the control performance without any further adaptation online for the estimate neural weights. Simulation results have been given to illustrate that the proposed scheme not only can learn and memorize knowledge like humans but also can utilize experience to achieve superior control performance.  相似文献   

20.
 It is observed that landing performance is the most typical phase of an aircraft performance. During landing operation the stability and controllability are the major considerations. To achieve a safe landing, an aircraft has to be controlled in such a way that its wheels touch the ground comfortably and gently within the paved surface of the runway. The conventional control theory found very successful in solving well defined problems, which are described precisely with definite and clearly mentioned boundaries. In real life systems the boundaries can't be defined clearly and conventional controller does not give satisfactory results. Whenever, an aircraft deviates from its glide path (gliding angle) during landing operation, it will affect the landing field, landing area as well as touch down point on the runway. To control correct gliding angle (glide path) of an aircraft while landing, various traditional controllers like PID controller or state space controller as well as maneuvering of pilots are used, but due to the presence of non-linearities of actuators and pilots these controllers do not give satisfactory results. Since artificial neural network can be used as an intelligent control technique and are able to control the correct gliding angle i.e. correct gliding path of an aircraft while landing through learning which can easily accommodate the aforesaid non-linearities. The existing neural network has various drawbacks such as large training time, large number of neurons and hidden layers required to deal with complex problems. To overcome these drawbacks and develop a non-linear controller for aircraft landing system a generalized neural network has been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号