首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hole transport materials are critical to the performance of organic light-emitting diodes (OLEDs). While 1,1-bis(di-4-tolylaminophenyl)cyclohexane (TAPC) with a high triplet energy is widely used for high efficiency phosphorescent OLEDs, devices using TAPC as a hole transport layer (HTL) have a short operating lifetime due to the build-up of trapped charges at the TAPC/emitting layer (EML) interface during device operation. In this work, to solve the operating stability problem, instead of using conventional HTLs, we use a(fac-tris(2-phenylpyridine)iridium (III))(Ir(ppy)3) doped layer as an HTL to replace the conventional HTLs. Because of the hole injecting and transporting abilities of the phosphorescent dye, holes can be directly injected into the emitting layer without an injection barrier. OLEDs based on a phosphorescent dye-doped HTL show significant improvement in operational stability without loss of efficiency.  相似文献   

2.
In this work we demonstrate the unique hole injection and transport properties of a substoichiometric tungsten oxide with precise stoichiometry, in particular WO2.5, obtained after the controlled hydrogen reduction during growth of tungsten oxide, using a simple hot-wire vapor deposition technique. We present clear evidence that tungsten suboxide exhibits metallic character and that an almost zero hole injection barrier exists at the anode/polymer interface due to the formation/occupation of electronic gap states near the Fermi level after oxide’s reduction. These states greatly facilitate hole injection and charge generation/electron extraction enabling the demonstration of extremely efficient hole only devices. WO2.5 films exhibit metallic-like conductivity and, thus, can also enhance charge transport at both anode and cathode interfaces. Electroluminescent devices using WO2.5 as both, hole and electron injection layer, and poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1′,3}-thiadiazole)] (F8BT) as the emissive layer exhibited high efficiencies up to 7 cd/A and 4.5 lm/W, while, stability studies revealed that these devices were extremely stable, since they were operating without encapsulation in air for more than 700 h.  相似文献   

3.
A new aqueous based polymer, Plexcore® OC AQ1200 (AQ1200) was used as a hole injection layer (HIL) in organic light emitting diodes (OLEDs) and the device results are compared with polyethylene dioxythiophene:polystyrene sulfonate (PEDOT:PSS) in terms of injection efficiency and stability. Dark injection transient measurements show a higher injection efficiency in hole-only devices using AQ1200 HIL compared with PEDOT:PSS. Using AQ1200 as an HIL, high efficiency phosphorescent OLEDs are demonstrated to have a long lifetime, with an estimated operational half lifetime (LT 50) of more than 8000 h from an initial luminance of 1000 cd/m2.  相似文献   

4.
Ultrathin non-doped emissive layer (EML) has been employed in green phosphorescent top-emitting organic light-emitting diodes (TOLEDs) to take full advantages of the cavity standing wave condition in a microcavity structure. Much higher out-coupling efficiency has been observed compared to conventional doped EML with relatively wide emission zone. A further investigation on dual ultrathin non-doped EMLs separated by a special bi-layer structure demonstrates better charge carrier balance and improved efficiency. The resulting device exhibits a high efficiency of 125.0 cd/A at a luminance of 1000 cd/m2 and maintains to 110.9 cd/A at 10,000 cd/m2.  相似文献   

5.
Flexible white top-emitting organic light-emitting diodes (WTEOLEDs) with red and blue phosphorescent dual-emitting layers were fabricated onto polyethylene terephthalate (PET) substrates. By inserting a 2-nm thin tris(phenypyrazole)iridium between the red and the blue emitters as an electron/exciton blocking layer, significant improvements on luminous efficiency and color stability were observed, reaching 9.9 cd/A (3.74 lm/W) and a small chromaticity change of (0.019, 0.011) in a wide luminance range of 80–5160 cd/m2. The origin on color stability was explored by analyzing the electroluminescent spectra, the time-resolved transient photoluminescence decay lifetimes of phosphors, and the tunneling phenomenon. In addition, mechanical bending lifetimes in WTEOLEDs with spin-coated  相似文献   

6.
《Organic Electronics》2008,9(6):1118-1121
We present a method for improving the efficiency of charge carrier injection at both cathode and anode of inverted top-emitting organic light-emitting diode (TOLED). In this method, a bottom-emitting OLED (BOLED) is first fabricated on a flexible substrate, which is then transferred as a whole to a glass substrate for the fabrication of the inverted TOLED (ITOLED). The electrode engineering that is responsible for the improvement, which is not possible in the traditional fabrication of ITOLED, is made realizable by the whole device transfer.  相似文献   

7.
An additional p-doping layer is added to the P-I-N stack of top-emitting organic light-emitting diodes (TEOLEDs) to control the electron tunneling current and improve interfacial stability. In addition, double p-doped layers, which are adjacent to the bottom-anode, are introduced to simultaneously optimize robustness and doping efficiency of p-type doping. In the emissive layer (EML), a second assistant emitter molecule is used which transfer its triplet energy to the actual emitter which is lower in energy, thus increasing the luminous efficacy. Such a co-doped dual-emitter layer is able to separate polarons and excitons and thus reduces chemical degradation. Compared to conventional P-I-N TEOLEDs, our novel P-I-N-P device shows negligible increase of driving voltage at low bias but offers significantly increased efficiencies. In addition, the P-I-N-P stack renders the electrical properties less sensitive to thickness variations and prolonged operation, which is attributed to the existence of a one-sided abrupt N-P tunneling junction beneath the top cathode contact.  相似文献   

8.
This study demonstrated p-i-n organic light-emitting diodes (OLEDs) incorporating a novel n-doping transport layer which is comprised of cesium iodide (CsI) doped into tris-(8-hydroxyquinoline) aluminum (Alq3) as n-doping electron transport layer (n-ETL) and a p-doping hole transport layer (p-HTL) which includes molybdenum oxide (MoO3) doped into 4,4′,4″-tris[2-naphthyl(phenyl)amino] triphenylamine (2-TNATA). The device with a 15 wt.% CsI-doped Alq3 layer shows a turn on voltage of 2.4 V and achieves a maximum power efficiency of to 4.67 lm/W as well, which is significantly improved compared to these (3.6 V and 3.21 lm/W, respectively) obtained from the device with un-doped Alq3. This improvement is attributed to an increase in the number of electron carriers in the transportation layer leading to an efficient charge balance in the emission zone. A possible mechanism behind the improvement is discussed based on X-ray photoelectron spectroscopy (XPS).  相似文献   

9.
To improve the poor contrast of conventional organic light-emitting diodes (OLEDs) resulting from highly reflective metal electrode, a dark-and-conductive electrode with an average reflectance of 28.1% and a resistivity of 4.6 × 10−4 Ω/cm was fabricated by fine-tuning O2/Ar flow ratio on aluminum electrode sputtering. X-ray photoelectron spectroscopy analysis indicates pure aluminum and aluminum oxide coexist in the fabricated dark-and-conductive electrodes. With the proposed dark-and-conductive AlO1.086 electrodes, top-emitting OLEDs exhibit significantly improved contrast, whereas maintain moderate luminous efficiency. The demonstrated AlO1.086 dark-and-conductive electrodes can potentially replace the circular polarizers for high-contrast OLED display applications.  相似文献   

10.
11.
Non-doped inverted top-emitting organic light-emitting diode with high efficiency is demonstrated through employing an effective hole-injection layer composed of MoOx. One reason for high efficiency lies on the energy-level matching between MoOx and hole-transport, and another is due to the Ohmic contact formed between MoOx and Ag. Both of them lead to an improvement of the hole-injection capability from Ag top anode. Moreover, the symmetrical current of “hole-only” device with MoOx shows better hole-injection capability, which is independent of the deposition sequence. The optimized device with MoOx hole-injection layer exhibits maximum current efficiency of 3.7 cd/A at a raised luminance level of 14,900 cd/m2 and a maximum luminance of 47,000 cd/m2 under 18 V.  相似文献   

12.
《Organic Electronics》2014,15(7):1465-1475
The flexible top-emitting white organic light-emitting diode (FTEWOLED) with a very high efficiency but a significant color alteration is achieved with a blue/red/blue sandwiched tri-emission-layer. The voltage-dependent recombination region alternation and the emission mechanism are systematically investigated through a delta-doping method and the time-resolved transient photoluminescence lifetime measurement. By locating the main exciton recombination region at the 4,4′,4″-Tris(carbazol-9-yl)-triphenylamine (TCTA) and 9,9-spirobifluoren-2-yl-diphenyl-phosphine oxide (SPPO1) interface, replacing the carrier-trapping red dopant guest with an orange guest that utilizes energy transfer mechanism, and using a P–I–N structure together with the FIrpic blue guest dopant to balance the electron and hole carriers, an extremely color stable and a very high efficient FTEWOLED is fabricated, with the resulting high current and power efficiencies of 22.7 cd/A and 14.27 lm/W, and a warm white illumination with a small chromaticity variation of (−0.0087, +0.0015) over a broad luminance range of more than four orders of magnitude. In addition, the performances can be further improved to 23,340 cd/m2, 24.49 cd/A and 15.39 lm/W with a slight concentration alteration of the orange emitter.  相似文献   

13.
We have demonstrated a novel approach for fabricating efficient hybrid organic–inorganic light emitting diodes (HyLEDs) by introducing dopants into solutions processable metal oxides as an interfacial layer. The doped ZnO is prepared by adding ionic liquid (IL) to a precursor solution for the ZnO. In this way a heavily doped ZnO:ILs cathode was obtained that enhances the electron injection properties and assures a good wetting of the organic active materials.  相似文献   

14.
We synthesized π-conjugated lithium phenolate complexes, lithium 2-(2-pyridyl)phenolate (LiPP), lithium 2-(2′, 2′′-bipyridine-6′-yl)phenolate (LiBPP), and lithium 2-(isoquinoline-1′-yl)phenolate (LiIQP). These complexes showed lower sublimation temperatures of 305–332 °C compared to 717 °C of LiF. The organic light-emitting devices (OLEDs) using these complexes as an electron injection layer exhibited high efficiencies which are comparable to that of the device using LiF. Especially, a 40-nm thick film of LiBPP or LiPP was effective as an electron injection material, providing low driving voltages, while such a thick film of LiF serves as a complete insulator, resulting in high driving voltages.  相似文献   

15.
Green electrophosphorescent inverted top-emitting organic light-emitting diodes with a Ag/1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN) anode are demonstrated. A high current efficacy of 124.7 cd/A is achieved at a luminance of 100 cd/m2 when an optical outcoupling layer of N,N′-di-[(1-naphthyl)-N,N′-diphenyl]-1,1′-biphenyl-4,4′-diamine (α-NPD) is deposited on the anode. The devices have a low turn-on voltage of 3.0 V and exhibit low current efficacy roll-off through luminance values up to 10,000 cd/m2. The angle dependent spectra show deviation from Lambertian emission and color change with viewing angle. Hole-dominated devices with Ag/HAT-CN electrodes show current densities up to three orders of magnitude higher than devices without HAT-CN.  相似文献   

16.
《Organic Electronics》2008,9(3):333-338
Effects of doping molybdenum trioxide (MoO3) in N,N′-diphenyl-N,N′-bis(1,1′-biphenyl)-4,4′-diamine (NPB) are studied at various thicknesses of doped layer (25–500 Å) by measuring the current–voltage characteristics, the capacitance–voltage characteristics and the operating lifetime. We formed charge transfer complex of NPB and MoO3 by co-evaporation of both materials to achieve higher charge density, lower operating voltage, and better reliability of devices. These improved performances may be attributed to both bulk and interface properties of the doped layer. The authors demonstrated that the interface effects play more important role in lowering the operating voltage and increasing the lifetime.  相似文献   

17.
Highly enhanced electron injection is demonstrated with a thin manganese dioxide (MnO2) electron injection layer (EIL) in Alq3-based organic light-emitting diodes. Insertion of the MnO2 EIL between the Al cathode and Alq3 results in highly improved device characteristics. In situ photoelectron spectroscopy shows remarkable reduction of the electron injection barrier without significant chemical reactions between Alq3 and MnO2, which could induce Alq3 destruction. The reduction of the electron injection barrier is due to the n-type doping effect, and the lack of strong interfacial reaction is advantageous with regards to more efficient electron injection than a conventional LiF EIL. These properties render the MnO2, a potential EIL.  相似文献   

18.
We report efficient single layer red, green, and blue (RGB) phosphorescent organic light-emitting diodes (OLEDs) using a “direct hole injection into and transport on triplet dopant” strategy. In particular, red dopant tris(1-phenylisoquinoline)iridium [Ir(piq)3], green dopant tris(2-phenylpyridine)iridium [Ir(ppy)3], and blue dopant bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium [FIrpic] were doped into an electron transporting 1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi) host, respectively, to fabricate RGB single layer devices with indium tin oxide (ITO) anode and LiF/Al cathode. It is found that the maximum current efficiencies of the devices are 3.7, 34.5, and 6.8 cd/A, respectively. Moreover, by inserting a pure dopant buffer layer between the ITO anode and the emission layer, the efficiencies are improved to 4.9, 43.3, and 9.8 cd/A, respectively. It is worth noting that the current efficiency of the green simplified device was as high as 34.6 cd/A, even when the luminance was increased to 1000 cd/m2 at an extremely low applied voltage of only 4.3 V. A simple accelerated aging test on the green device also shows the lifetime decay of the simplified device is better than that of a traditional multilayered one.  相似文献   

19.
In this work, we demonstrate three kinds of intermediate connectors (ICs) having a general configuration of “LiNH2-doped 4,7-diphenyl-1,10-phenanthroline (BPhen)/hole injection layer (HIL)/N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB)”, in which the HIL is 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN), MoO3 or MoO3-doped NPB, respectively. Tandem organic light-emitting devices (OLEDs), vertically stacking two electroluminescence units, are fabricated using these intermediate connectors in between. The results show that, higher power efficiency is achievable in the cases of utilizing HAT-CN and MoO3-doped NPB as HILs in the intermediate connectors versus MoO3, whereas higher current efficiency can be obtained in the cases of using MoO3 and MoO3-doped NPB versus HAT-CN. We use the current density–voltage and low frequency differential capacitance–voltage measurements and find that the HILs primarily influence the voltage drop and the charge generation capability of intermediate connectors. The correlation between the effectiveness of intermediate connectors and the performances of tandem OLEDs is established, which can shed light on choosing suitable component materials to optimize the intermediate connectors.  相似文献   

20.
Stacked inverted top-emitting green electrophosphorescent organic light-emitting diodes (OLEDs) are demonstrated on glass and flexible glass substrates. A single-unit OLED is shown to have a current efficacy of 46.8 cd/A at a luminance of 1215 cd/m2. When two of these OLEDs are stacked, the double-unit OLED exhibits a current efficacy more than twice that of the single-unit OLED, with a current efficacy of 97.8 cd/A at a luminance of 1119 cd/m2. With the addition of an optical outcoupling layer of N,N′-Di-[(1-naphthyl)-N,N′-diphenyl]-1,1′-biphenyl)-4,4′-diamine (α-NPD) on top of the semitransparent gold anode, the double-unit stacked OLED achieves a maximum current efficacy of 205 cd/A at a luminance of 103 cd/m2, maintaining a high current efficacy of 200 cd/A at a luminance of 1011 cd/m2. These stacked inverted OLED combine the advantages of inverted OLEDs with the benefits of having a stacked architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号