首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of bottom‐contact thin‐film transistor (TFT) structures lags behind that of top‐contact structures owing to the far greater contact resistance. The major sources of the contact resistance in bottom‐contact TFTs are believed to reflect a combination of non‐optimal semiconductor growth morphology on the metallic contact surface and the limited available charge injection area versus top‐contact geometries. As a part of an effort to understand the sources of high charge injection barriers in n‐channel TFTs, the influence of thiol metal contact treatment on the molecular‐level structures of such interfaces is investigated using hexamethyldisilazane (HMDS)‐treated SiO2 gate dielectrics. The focus is on the self‐assembled monolayer (SAM) contact surface treatment methods for bottom‐contact TFTs based on two archetypical n‐type semiconductors, α,ω‐diperfluorohexylquarterthiophene (DFH‐4T) and N,N′bis(n‐octyl)‐dicyanoperylene‐3,4:9,10‐bis(dicarboximide) (PDI‐8CN2). TFT performance can be greatly enhanced, to the level of the top contact device performance in terms of mobility, on/off ratio, and contact resistance. To analyze the molecular‐level film structural changes arising from the contact surface treatment, surface morphologies are characterized by atomic force microscopy (AFM) and scanning tunneling microscopy (STM). The high‐resolution STM images show that the growth orientation of the semiconductor molecules at the gold/SAM/semiconductor interface preserves the molecular long axis orientation along the substrate normal. As a result, the film microstructure is well‐organized for charge transport in the interfacial region.  相似文献   

2.
研究了热壁外延(HWE)生长条件对Si(100)衬底上沉积外延的多晶CdTe薄膜的晶粒尺寸和取向的影响.用SEM和XRD技术分析了不同外延时间、不同衬底温度及不同源温下外延膜的表面形貌和结构特征.SEM发现随着外延时间的增加或衬底温度的提高,晶粒尺寸明显增大;XRD显示所有的外延薄膜均为面心立方结构,并高度显示优势取向(111),且随着衬底温度或薄膜厚度的增加,(111)峰的衍射强度增加,显示薄膜的择优取向更好.其原因是面心立方结构中,(111)表面具有的表面自由能最低.通过对不同外延时间下薄膜厚度的测试发现,薄膜具有加速生长趋势.衬底温度及源温对外延层厚度均有较大的影响.  相似文献   

3.
微波退火非晶硅薄膜低温晶化研究   总被引:2,自引:1,他引:1  
多晶硅薄膜晶体管以及其独特的优点在液晶显示领域中起着重要的作用。为了满足在普通玻璃衬底上制备多晶硅薄膜晶体管有源矩阵液晶显示器,低温制备(<600℃高质量多晶硅薄膜已成为研究热点。文章研究了一种低温制备多晶硅薄膜的新工艺;微波退火非晶硅薄膜固相晶化法,利用X射线衍射、拉曼光谱和扫描电镜分析了微波退火工艺对非晶硅薄膜固相晶化的影响,成功实现了低温制备多晶硅薄膜。  相似文献   

4.
采用物理气相沉积(PVD)法在ITO透明导电衬底上制备GaSb多晶薄膜.研究了衬底温度及薄膜厚度对GaSb薄膜结构特性、电学特性以及光学特性的影响.在一定条件下生长的GaSb薄膜择优取向由GaSb(111)晶向转变为GaSb(220)晶向, 这是在玻璃衬底上生长GaSb薄膜没有发现的现象.择优取向改变为(220)晶向的GaSb薄膜具有更高的霍尔迁移率.因为这种薄膜材料具有更少的晶粒间界和更少的缺陷.经优化后的GaSb薄膜的光学吸收系数在104 cm-1以上, 适用于热光伏薄膜太阳电池中.  相似文献   

5.
Fabrication of silicon thin film (TF-Si) solar cells with high throughput on cheap substrates requires both adequate deposition technique and suitable substrate. Our approach consists of depositing polycrystalline silicon films with thickness of 10–30 μm by Rapid Thermal Chemical Vapour Deposition (RT-CVD) onto newly developed mullite ceramics. Compared to alumina, the latter has the advantage that the thermal expansion coefficient can be matched to that of silicon by compositional adjustment. The substrates are elaborated by the tape casting process, enabling continuous production on large size (≥50 cm width). The polycrystalline silicon thin film with structure p+/p is deposited at atmospheric pressure by RT-CVD, tailoring in-situ the temperature and doping profiles. High deposition rates of 1–5 μm/min are commonly obtained in the temperature range 1000–1200°C. In the present paper, the overall optical, crystalline and electrical features of TF-Si on mullite ceramics are presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
采用直流磁控溅射法,在水冷7059玻璃衬底上制备了具有高透射率和相对低电阻率的掺钛氧化锌(ZnO∶Ti)透明导电薄膜,研究了溅射偏压对ZnO∶Ti薄膜结构、形貌和光电性能的影响。结果表明,ZnO∶Ti薄膜为六角纤锌矿多晶结构,具有c轴择优取向。溅射偏压对ZnO∶Ti薄膜的结构和电阻率有重要影响。当溅射偏压为10V时,电阻率具有最小值1.90×10–4?.cm。薄膜具有良好的附着性能,可见光区平均透射率超过90%。该ZnO∶Ti薄膜可以用作薄膜太阳能电池和液晶显示器的透明电极。  相似文献   

7.
We report optical and electrical properties of polycrystalline GaSb thin films which were successfully grown by co-evaporation on soda-lime glass substrates. The thin films have preferential orientation of the (111)direction. SEM results indicate that the average grain size of GaSb thin film is 500 nm with the substrate temperature of 560 ℃. The average reflectance of GaSb thin film is about 30% and the absorption coefficient is of the order of 104 cm-1. The optical bandgap of GaSb thin film is 0.726 eV. The hole concentration shows a clear increasing trend as the Ga-evaporation-temperature/Sb-evaporation-temperature (TGa/TSb) ratio increases. When the Ga crucible temperature is 810 ℃ and the antinomy crucible temperature is 415 ℃, the hole concentration of polycrystalline GaSb is 2 x 1017 cm-3 and the hole mobility is 130 cm2/(V-s). These results suggest that polycrystalline GaSb thin film is a good candidate for the use as a cheap material in TPV cells.  相似文献   

8.
采用LBL(layer-by-layer)法制备了Cu2SnS3薄膜.即首先采用电化学方法在SnO2衬底上制备SnS薄膜,然后又在其上用化学沉积法制备CuS薄膜,最后进行退火处理得到厚度约为960 nm的Cu2SnS3薄膜.探讨了薄膜的制备机理、生长速度、结构和光学特性.制备的薄膜为多晶(Cu2SnS3)72z(三斜或假单斜晶系)结构,其直接光学带隙约为1.05 eV.  相似文献   

9.
PLD法制备ZnO薄膜的退火特性和蓝光机制研究   总被引:1,自引:0,他引:1  
通过脉冲激光沉积(PLD)方法,在O2中和100~500℃衬底温度下,用粉末靶在Si(111)衬底上制备了ZnO薄膜,在300℃温度下生长的薄膜在400~800℃温度和N2氛围中进行了退火处理,用X射线衍射(XRD)谱、原子力显微镜(AFM)和光致发光(PL)谱表征薄膜的结构和光学特性。XRD谱显示,在生长温度300℃时获得较好的复晶薄膜,在退火温度700℃时获得最好的六方结构的结晶薄膜;AFM显示,在此退火条件下,薄膜表面平整、晶粒均匀;PL谱结果显示,在700℃退火时有最好的光学特性。  相似文献   

10.
闫金良 《半导体光电》2004,25(5):384-387
研究了不同厚度ITO膜的大尺寸超薄导电玻璃的翘曲度,ITO膜形成期间基片温度对ITO膜层晶体化程度的影响及不同基片温度下形成的ITO膜层在不同的退火条件下的退火前、后的电阻率和膜压应力.实验发现,ITO膜层的很高的压应力是导致导电膜玻璃翘曲的直接原因;采用室温沉积非晶ITO膜,然后经高温热退火可获得低膜压应力多晶相ITO膜.基于实验结论,提出了一种适合批量生产的低翘曲度ITO膜导电玻璃的制备工艺.  相似文献   

11.
Pb(Zr_(0.52)Ti_(0.48))O_3(PZT) thin films have been deposited on a p-type Si substrate separated by a polycrystalline silicon/SiO_2 stacked buffer layer.The X-ray diffraction peaks of the PZT thin films prepared on the polycrystalline silicon annealed at different temperatures were measured.In addition,the polarization of the Pt/PZT/polycrystalline silicon capacitor has been investigated.The memory capacitor of the metal/ferroelectric/polycrystalline silicon/SiO_2/semiconductor structure annealed at 650℃...  相似文献   

12.
Gallium-doped zinc oxide (GZO) thin films with very high conductivity and transparency were successfully deposited by RF magnetron sputtering at a substrate temperature of 400 °C. The dependence of the film properties over the thickness was investigated. X-ray diffraction (XRD) results revealed the polycrystalline nature of the films with hexagonal wurtzite structure having preferential orientation along [001] direction normal to the substrate. The lowest resistivity obtained from electrical studies was 5.4×10−4 Ω cm. The optical properties were studied using a UV–vis spectrophotometer and the average transmittance in the visible region (400–700 nm) was found to be 92%, relative to the transmittance of a soda–lime glass reference for a GZO film of thickness 495 nm and also the transparency of the films decreases in the near IR region of the spectra. The mobility of the films showed a linear dependence with crystallite size. GZO film of thickness 495 nm with the highest figure of merit indicates that the GZO film is suitable as an ideal transparent conducting oxide (TCO) material for solar cell applications.  相似文献   

13.
The growth of low temperature (LT) GaAs by molecular beam epitaxy has been studied using ellipsometry. Different regimes of growth were observed in the data, depending on film thickness. Epitaxial growth of pseudomorphic LT-GaAs occurred immediately above the substrate, followed by a layer with changing dielectric properties. This upper layer can be modeled as a two-phase region consisting of epitaxial LT-GaAs and small grained, polycrystalline GaAs, which increases in volume fraction with increasing layer thickness. For sufficiently thick LT layers, cross-sectional transmission electron microscopy analysis showed pyramidal defects that were composed primarily of highly twinned regions. The ellipsometry data showed a deviation from the homogeneous growth model at a thickness less than the thickness at which the pyramidal defects nucleated in all samples.  相似文献   

14.
Thickness‐dependent crystal structure, surface morphology, surface energy, and molecular structure and microstructure of a series of polycrystalline pentacene films with different film thickness ranging from several monolayers to the several hundred nanometers have been investigated using X‐ray diffraction (XRD), atomic force microscopy (AFM), contact angle meter, and Raman spectroscopy. XRD studies indicate that thin film polymorphs transformation behaviours are from the orthorhombic phase to the thin‐film phase and then to the triclinic bulk phase as measured by the increased tilt angle (θtilt) of the pentacene molecule from the c‐axis toward the a‐axis. We propose a growth model that rationalizes the θtilt increased along with increasing film thickness in terms of grain size and surface energy varying with film growth using AFM combined with contact angle measurements. The vibrational characterizations of pentacene molecules in different thickness films were investigated by Raman spectroscopy compared to density functional theory calculations of an isolated molecule. In combination with XRD and AFM the method enables us to distinguish the molecular microstructures in different thin film polymorphs. We proposed a methodology to probe the microscopic parameters determining the carrier transport properties based on Davydov splitting and the characteristics of aromatic C–C stretching modes in Raman spectra. When compared to the triclinic bulk phase at a high thickness, we suggest that the first few monolayer structures located at the dielectric surface could have inferior carrier transport properties due to weak intermolecular interactions, large molecular relaxation energy, and more grain boundaries.  相似文献   

15.
利用射频等离子体辅助分子束外延技术,在LSAT(111)衬底上制备高质量ZnO单晶薄膜.研究了衬底表面预处理及生长温度对ZnO外延膜的生长过程、外延取向关系以及表面形貌的影响.发现在较低温度下生长ZnO时,薄膜中容易形成30. 旋转畴,而在较高温度下,可完全消除薄膜中的旋转畴,得到具有单一畴的ZnO单晶薄膜,讨论了旋转畴的起源以及生长温度对于消除旋转畴的作用.锐利的3×3 RHEED图像验证了ZnO薄膜具有O极性  相似文献   

16.
In this study, room‐temperature mechanical rubbing is used to control the 3D orientation of small π‐conjugated molecular systems in solution‐processed polycrystalline thin films without using any alignment substrate. High absorption dichroic ratio and significant anisotropy in charge carrier mobilities (up to 130) measured in transistor configuration are obtained in rubbed organic films based on the ambipolar quinoidal quaterthiophene (QQT(CN)4). Moreover, a solvent vapor annealing treatment of the rubbed film is found to improve the optical and charge transport anisotropy due to an increased crystallinity. X‐ray diffraction and atomic force microscopy measurements demonstrate that rubbing does not only lead to an excellent 1D orientation of the QQT(CN)4 molecules over large areas but also modifies the orientation of the crystals, moving molecules from an edge‐on to a face‐on configuration. The reasons why a mechanical alignment technique can be used at room temperature for such a polycrystalline film are rationalized, by the plastic characteristics of the QQT(CN)4 layer and the role of the flexible alkyl side chains in the molecular packing. This nearly complete conversion from edge‐on to face‐on orientation by mechanical treatment in polycrystalline small‐molecule‐based thin films opens perspectives in terms of fundamental research and practical applications in organic optoelectronics.  相似文献   

17.
研究了金刚石聚晶碳膜的生长过程,以及不同生长阶段碳膜的场发射性能。通过磁控溅射法在陶瓷上镀一层金属钛作为制备碳膜的衬底,将衬底放入微波等离子体化学气相沉积腔中,经过不同的沉积时间制备出一系列的碳膜。利用SEM、Raman光谱仪、X射线衍射仪等仪器,对碳膜进行了形貌与成分分析,最后利用二极结构场发射装置,测试了碳膜的场发射性能。着重讨论了金刚石聚晶碳膜生长过程中的变化,并且对金刚石聚晶碳膜的场发射机理进行了深入研究。  相似文献   

18.
Growth of intermetallic compounds (IMC) at the interface of Sn–2.0Ag–2.5Zn solder joints with Cu, Ni, and Ni–W substrates have been investigated. For the Cu substrate, a Cu5Zn8 IMC layer with Ag3Sn particles on top was observed at the interface; this acted as a barrier layer preventing further growth of Cu–Sn IMC. For the Ni substrate, a thin Ni3Sn4 film was observed between the solder and the Ni layer; the thickness of the film increased slowly and steadily with aging. For the Ni–W substrate, a thin Ni3Sn4 film was observed between the solder and Ni–W layer. During the aging process a thin layer of the Ni–W substrate was transformed into a bright layer, and the thickness of bright layer increased with aging.  相似文献   

19.
八羟基喹啉镉薄膜制备及其光学特性   总被引:1,自引:0,他引:1  
用真空蒸镀方法,在玻璃衬底上制备了衬底温度不同的八羟基喹啉镉薄膜.XRD分析表明,八羟基喹啉镉薄膜呈多晶态,且衬底温度越高,衍射峰越强,薄膜的结晶性能逐渐变好,结晶晶粒尺度也越大.AFM研究表明,衬底温度升高,薄膜表面形貌越均匀有序,质量变好.MM-16相调制型椭圆偏振光谱仪研究发现,衬底温度升高导致反蒸发增强,薄膜生长速率减小,随着入射光波长的增加,薄膜的折射率和消光系数逐渐减小.随着衬底温度升高,因薄膜晶粒尺度增大,折射率和消光系数也增大;并给出了它们的变化范围.  相似文献   

20.
《Organic Electronics》2008,9(5):602-608
Highly crystalline polyaniline (PANI) films were deposited on degenerated silicon (n+-Si) substrates covered with its native oxide (SiO2), surface modified with amino-silane self-assembled monolayers (SAM). Scanning electron microscopy studies reveal formation of single crystal domains scattered all over the surface of film. Height and current images obtained using current-sensing AFM (C-AFM) exhibit pyramidal topography of crystallites, and inhomogeneous conductivity. As the native oxide and SAM acts as a very thin insulating layer (<2 nm) between the metal-like substrate (degenerated Si) and the PANI film, it forms n+-Si/SiO2/SAM/PANI metal-insulator-semiconductor (MIS) heterostructure. C-AFM probe was used for I–V measurements on the MIS structures and study the tunneling conduction across it. The conductance spectra derived from I–V characteristics corroborates well with the polaron-lattice band structure of doped PANI with presence of polaron bands between the HOMO-LUMO energy gap. These polaron bands are well-resolved from our C-AFM measurements and they are located about 0.25 eV below the LUMO and above the HOMO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号