首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental study on the combustion and emission characteristics of a direct-injection spark-ignited engine fueled with natural gas/hydrogen blends under various ignition timings was conducted. The results show that ignition timing has a significant influence on engine performance, combustion and emissions. The interval between the end of fuel injection and ignition timing is a very important parameter for direct-injection natural gas engines. The turbulent flow in the combustion chamber generated by the fuel jet remains high and relative strong mixture stratification is introduced when decreasing the angle interval between the end of fuel injection and ignition timing giving fast burning rates and high thermal efficiencies. The maximum cylinder gas pressure, maximum mean gas temperature, maximum rate of pressure rise and maximum heat release rate increase with the advancing of ignition timing. However, these parameters do not vary much with hydrogen addition under specific ignition timing indicating that a small hydrogen fraction addition of less than 20% in the present experiment has little influence on combustion parameters under specific ignition timing. The exhaust HC emission decreases while the exhaust CO2 concentration increases with the advancing of ignition timing. In the lean combustion condition, the exhaust CO does not vary much with ignition timing. At the same ignition timing, the exhaust HC decreases with hydrogen addition while the exhaust CO and CO2 do not vary much with hydrogen addition. The exhaust NOx increases with the advancing of ignition timing and the behavior tends to be more obvious at large ignition advance angle. The brake mean effective pressure and the effective thermal efficiency of natural gas/hydrogen mixture combustion increase compared with those of natural gas combustion when the hydrogen fraction is over 10%.  相似文献   

2.
在缸内直喷火花点火发动机上开展了天然气掺混0%-18%氢气的混合燃料不同点火时刻下的试验研究。结果表明:对于给定的喷射时刻和喷射持续期,点火时刻对发动机性能、燃烧和排放有较大影响,喷射结束时刻与点火时刻的间隔对直喷天然气发动机极为重要,喷射结束时刻与点火时刻的间隔缩短时,混合气分层程度高,燃烧速率快,热效率高。最大放热率等燃烧特征参数随点火时刻的提前而增加。HC排放随点火时刻的提前而下降,CO2和NOx排放随点火时刻的提前而增加,NOx排放的增加在大点火提前角下更明显。掺氢可降低HC排放,对CO和CO2排放影响不大。掺氢量大于10%时可提高天然气发动机热效率。  相似文献   

3.
Combustion and emission characteristics of a spray guided direct-injection spark-ignition engine fueled with natural gas-hydrogen blends were investigated. Results show that the brake thermal efficiency increases with the increase of hydrogen fraction and it shows an increasing and then decreasing trend with advancing fuel-injection timing. For later injection timings, the beginning of heat release is advanced with increasing hydrogen fraction, while the beginning of heat release is advanced and then retarded with the increase of hydrogen fraction at earlier injection timings. The flame development duration, rapid combustion duration and total combustion duration decrease with increasing hydrogen fraction. Maximum cylinder gas pressure, maximum mean gas temperature, maximum rate of pressure rise and maximum heat release rate show an increasing and then decreasing trend with the increase of hydrogen fraction. Brake NOx emission is increased and then decreased, while brake HC, CO and CO2 emissions decrease with the increase of hydrogen fraction.  相似文献   

4.
The effects of hydrogen ratios on combustion and emission characteristics of gasoline engine were studied under different exhaust gas recirculation (EGR), ignition timing and ignition pressure. The test performed in a modified gasoline direct ignition engine at different hydrogen ratios of 0%, 5%, 10% and 25%. In addition, the EGR rate set to 0%, 5%, 10% and 20% to study the combustion and emission characteristics. Addition to the different hydrogen fractions, 5% of TiO2 is added to increase the combustion characteristics with reduced emission. Regarding the results of the current study, the engine torque increases by 15% due to the addition of hydrogen in gasoline, while mechanical efficiency is improved by achieving a large throttle opening. At the same time, NOx emission decreased by 62% compared to the unmodified engine due to the influence of EGR, hydrogen ratio and high oxygen concentration TiO2. Moreover, the emission of CO and HC also reduced due to the influence of hydrogen fuel. Additionally, few more tests are taken to monitor the effect of the injection pressure for the hydrogen fuel. Higher injection reports higher effective thermal efficiency at 4 MPa and lower NOx. Reasonable injection pressure results in shorten flame development period.  相似文献   

5.
The effects of hydrogen on the combustion characteristics, thermal efficiency, and emissions of a turbo gasoline direct-injection engine with exhaust gas recirculation (EGR) were investigated experimentally at brake mean effective pressures of 4, 6, and 8 bar at 2000 rpm. Four cases of hydrogen energy fraction (0%, 1%, 3% and 5%) of total fuel energy were studied. Hydrogen energy fraction of total fuel energy was hydrogen energy in the sum of energy of consumed gasoline and added hydrogen. The test results demonstrated that hydrogen addition improved the combustion speed and reduced cycle-to-cycle variation. In particular, cylinder-to-cylinder variation dramatically decreased with hydrogen addition at high EGR rates. This suggests that the operable EGR rate can be widened for a turbo gasoline direct-injection engine. The improved combustion and wider operable EGR rate resulted in enhanced thermal efficiency. However, the turbocharging effect acted in opposition to the thermal efficiency with respect to the EGR rate. Therefore, a different strategy to improve the thermal efficiency with EGR was required for the turbo gasoline direct-injection engine. HC and CO2 emissions were reduced but NOX emissions increased with hydrogen addition. The CO emissions as a function of engine load followed different trends that depended on the level of hydrogen addition.  相似文献   

6.
基于一台当量比燃烧的天然气发动机,采用三维燃烧分析与发动机一维热力学计算相结合的方式开展了废气再循环(exhaust gas recirculation,EGR)率及点火时刻对缸内燃烧过程和发动机排温的影响研究.研究结果表明:随着EG R率的增加,燃烧相位后移,燃烧持续期延长,放热率峰值减小,最大压升率、缸内最高燃烧压...  相似文献   

7.
为进一步降低燃油消耗率和有害排放,开发增程器专用发动机,在一台缸内直喷(GDI)汽油机上选取增程器的3个运行工况点,开展了当量比燃烧模式下的低压废气再循环(LP-EGR)试验研究.结果表明:随着废气再循环(EGR)率的增加、点火时刻的推迟,缸内压力和放热率峰值降低且推迟,燃烧持续期延长,缸内燃烧由爆震逐渐过渡到失火,NOx排放降低.随着EGR率的增加,HC排放升高,CO和PM排放降低.点火时刻对HC、CO和颗粒物(PM)排放的影响规律随EGR率的变化而不同.引入EGR前、后的颗粒物总数量(PN)浓度值均在较低的数量级(105/cm^3).3个工况点综合优化后的最低有效燃油消耗率为219.1 g/(kW·h),较原机降低了7.75%.  相似文献   

8.
Hydrocarbon exhaust emissions are mainly recognized as a consequent of carbon-based fuel combustion in compression ignition (CI) engines. Alternative fuels can be coupled with hydrocarbon fuels to control the pollutant emissions and improve the engine performance. In this study, different parameters that influence the engine performance and emissions are illustrated with more details. This numerical work was carried out on a dual-fuel CI engine to study its performance and emission characteristics at different hydrogen energy ratios. The simulation model was run with diesel as injected fuel and hydrogen, along with air, as inducted fuel. Three-dimensional CFD software for numerical simulations was implemented to simulate the direct-injection CI engine. A reduced-reaction mechanism for n-heptane was considered in this work instead of diesel. The Hiroyasu-Nagel model was presented to examine the rate of soot formation inside the cylinder. This work investigates the effect of hydrogen variation on output efficiency, ignition delay, and emissions. More hydrogen present inside the engine cylinder led to lower soot emissions, higher thermal efficiency, and higher NOx emissions. Ignition timing delayed as the hydrogen rate increased, due to a delay in OH radical formation. Strategies such as an exhaust gas recirculation (EGR) method and diesel injection timing were considered as well, due to their potential effects on the engine outputs. The relationship among the engine outputs and the operation conditions were also considered.  相似文献   

9.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

10.
This work presents an experimental study describing a six-cylinder spark ignition engine running with a lean equivalence ratio, high compression ratio, ignition delay and used in a cogeneration system (heat and electricity production). Three types of fuels; natural gas, pure methane and methane/hydrogen blend (85% CH4 and 15% H2 by volume), were used for comparison purposes. Each fuel has been investigated at 1500 rpm and for various engine loads fixed by electrical power output conditions. CO, CO2, HC, and NOx emissions values, and exhaust gas temperature were measured. The effect of fuel composition on engine characteristics has been studied. The results show, that the hydrogen addition increased HC emissions (around 18%), as well as performance, whilst it reduced NOx (around 31%), exhaust gas temperature, CO and CO2.  相似文献   

11.
不同喷射时刻缸内直喷天然气燃烧特性   总被引:4,自引:0,他引:4  
利用快速压缩装置研究不同喷射沓刻缸内直喷天然气燃烧特性。结果表明,天然气直喷燃烧可实现快速燃烧,缩短喷射时刻与点火时刻的时间差可明显缩短燃烧期。与均匀混合气燃烧相比,碳氢的排放增加,缩短喷射时刻与点火时刻的时间差可达到均匀混合气燃烧时相同的排放量。在很宽的当量比范围内,NOx增加,而CO仍维持很低数值,且不受喷射时刻的影响,直喷天然气燃烧可实现较高的压力升高值,且其数值不受喷射时刻的影响,所达到的高燃烧效率也不受喷射时刻的影响。  相似文献   

12.
Backfire is one of the major technical issues in a port injection type hydrogen fuelled spark ignition engine. It is an abnormal combustion phenomenon (pre-ignition) that takes place in combustion chamber and intake manifold during suction stroke. The flame propagates toward the upstream of the intake manifold from combustion chamber during backfire and thus can damage the intake and fuel supply systems of the engine, and stall the engine operation. The main cause of backfire could be the presence of any hot spot, lubricating oil particle's traces (HC and CO due to evaporation of the oil) and hot residual exhaust gas present in the combustion chamber during suction stroke which could act as an ignition source for fresh incoming charge. Monitoring the temperatures of the lubricating oil and exhaust gas during engine operation can reduce the probability of backfire. This was achieved by developing an electronic device which delays the injection timing of hydrogen fuel with the inputs of engine oil temperature (Tlube oil) and exhaust gas temperature (Texh). It was observed from the experimental results that the threshold values of Tlube oil and Texh were 85 °C and 540 °C respectively beyond which backfire occurred at equivalence ratio (φ) of 0.82. The developed device works based on the algorithm that retards the hydrogen injection to 40 0aTDC whenever the temperatures (Tlube oil and Texh) reached to the above mentioned values and thus the backfire was controlled. Delaying injection of hydrogen increased the time period at which only air is inducted during the early part of the suction stroke, this allows cooling of the available hot spots in the combustion chamber, hence the probability of backfire would be reduced.  相似文献   

13.
A full-cycle computational fluid dynamics (CFD) simulation coupled with detailed chemical kinetics mechanism has been used to investigate the effect of start of injection (SOI) timing and intake valve close (IVC) timing on performance and emissions of diesel premixed charge compression ignition (PCCI) engine. By sweeping SOI timing from −35 to −5 °CA ATDC and IVC timing from −140 to −80 °CA ATDC with fixed 50% exhaust gas recirculation (EGR) and 1.8 bar intake pressure, the contour plots for ignition timing, nitric oxides (NOx), soot, hydrocarbon (HC), carbon monoxide (CO), indicated specific fuel consumption (ISFC), and ringing intensity have been developed. The results indicate that the operating range can be divided into kinetically controlled region and mixing-controlled region, in which the ignition timing is solely controlled by IVC timing and SOI timing respectively. To Minimize HC, CO, NOx and soot emissions, SOI timing must be carefully adjusted within a limited range. With the retarded IVC timing, the operating range of SOI becomes wider for clean combustion. The IVC timing should be optimized with consideration of ignition timing and combustion efficiency at different SOI timing in order to improve fuel economy. For purpose of avoiding engine knock, the SOI timing around −20 °CA ATDC and early IVC timing are pursued.  相似文献   

14.
Effect of partially premixed mixture and hydrogen addition on natural gas direct-injection lean combustion was studied experimentally using a constant volume vessel. Flame propagating photos and pressure derived combustion parameters were analysed at different premixed ratios (from 0% to 80%) and hydrogen fractions (from 0% to 40%) at overall equivalence ratio of 0.6, 0.8 and 1.0, respectively. The results show that the flame kernel is concentrated to the spark position with the increase of premixed ratio and/or hydrogen fraction. Flame propagating speed is decreased with the increase of premixed ratio while it increases as hydrogen is added to natural gas. Hydrogen addition has little effect on the partially direct-injection natural gas combustion at the stoichiometric fuel-air mixture condition and all premixed ratios. However, hydrogen addition significantly enhances the combustion rate of natural gas direct-injection combustion at lean mixture condition. Both the initial and main combustion durations are increased with the increase of premixed ratio, while they show the decreasing trend as hydrogen is added to natural gas at the lean mixture condition. Partially premixed direct-injection combustion combining with hydrogen addition can achieve the stable spark ignition and fast combustion at the lean mixture condition.  相似文献   

15.
汽油加氢改善发动机性能的试验研究   总被引:7,自引:5,他引:7  
在汽油机的燃烧过程中加入部分的氢气进行燃烧,可对发动机的性能改善和废气排放物的降低起到良好的作用。本文就加氢后的汽油过量空气系数,点火提前角的变化,燃烧过程的循环压力变动,发动机的经济性及HC和CO排放问题进行了研究。试验结果表明:随着汽油燃烧过程中加氢比例的增大,混合气着火界线加宽。另外,由于氢气的火焰传播速度快,加氢后混合气的着火延迟期缩短,最佳点火提前角减小,燃烧过程的循环压力变动减小,而且  相似文献   

16.
Environmental benefits are one of the main motivations encouraging the use of natural gas as fuel for internal combustion engines. In addition to the better impact on pollution, natural gas is available in many areas. In this context, the present work investigates the effect of hydrogen addition to natural gas in dual fuel mode, on combustion characteristics improvement, in relation with engine performance. Various hydrogen fractions (10, 20 and 30 by v%) are examined. Results showed that natural gas enrichment with hydrogen leads in general to an improved gaseous fuel combustion, which corresponds to an enhanced heat release rate during gaseous fuel premixed phase, resulting in an increase in the in-cylinder peak pressure, especially at high engine load (4.1 bar at 70% load). The highest cumulative and rate of heat release correspond to 10% Hydrogen addition. The combustion duration of gaseous fuel combustion phase is reduced for all hydrogen blends. Moreover, this technique resulted in better combustion stability. For all hydrogen test blends, COVIMEP does not exceed 10%. However, no major effect on combustion noise was noticed and the ignition delay was not affected significantly. Regarding performance, an important improvement in energy conversion was obtained with almost all hydrogen blends as a result of improved gaseous fuel combustion. A maximum thermal efficiency of 32.5%, almost similar to the one under diesel operation, and a minimum fuel consumption of 236 g/kWh, are achieved with 10% hydrogen enrichment at 70% engine load.  相似文献   

17.
A detailed investigation of employing landfill gas together with additives such as hydrogen or propane or both as a primary low reactivity fuel in a reactivity controlled compression ignition combustion of a diesel engine is conducted. A 3401E caterpillar single-cylinder diesel engine with a bathtub piston bowl profile is utilized to execute the study. The engine is operated at various intake pressures of 1.6, 1.9, and 2.2 bar, and runs at a fixed engine speed of 1300 rpm. For verification purposes, the conduct of the present engine running on pure methane as a low reactivity fuel is compared to that of the same engine available in the literature. Next, a numerical simulation is made to assess the performance of the present engine running on landfill gas plus the additives. Based on the obtained results, injecting either hydrogen or propane or a combination of both up to a total amount of 10% by volume to the premixed of landfill gas and air, and advancing diesel fuel injection timing of about 20–30 deg. crank angle, render the landfill gas utilization quite competitive with using methane alone. Applying an enriched landfill gas in a reactivity controlled compression ignition diesel engine, as a power generator, drastically reduces the greenhouse gas emission to the atmosphere. Also, the CO and UHC mole fraction in the exhaust gas can be eliminated by either advancing the start of diesel injection or using hydrogen or propane or both as additives. In addition, utilizing hydrogen or propane or a combination of both with the primary fuel improves the peak pressure to about 16% in comparison with that of landfill gas alone.  相似文献   

18.
Effect of hydrogen addition on early flame growth of lean burn natural gas–air mixtures was investigated experimentally and numerically. The flame propagating photos of premixed combustion and direct-injection combustion was obtained by using a constant volume vessel and schlieren photographic technique. The pressure derived initial combustion durations were also obtained at different hydrogen fractions (from 0% to 40% in volumetric fraction) at overall equivalence ratio of 0.6 and 0.8, respectively. The laminar premixed methane–hydrogen–air flames were calculated with PREMIX code of CHEMKIN II program with GRI 3.0 mechanism. The results showed that the initial combustion process of lean burn natural gas–air mixtures was enhanced as hydrogen is added to natural gas in the case of both premixed combustion and direct-injection combustion. This phenomenon is more obvious at leaner mixture condition near the lean limit of natural gas. The mole fractions of OH and O are increased with the increase of hydrogen fraction and the position of maximum OH and O mole fractions move closing to the unburned mixture side. A monotonic correlation between initial combustion duration with the reciprocal maximum OH mole fraction in the flames is observed. The enhancement of the spark ignition of natural gas with hydrogen addition can be ascribed to the increase of OH and O mole fractions in the flames.  相似文献   

19.
在一台电控共轨发动机上,试验研究了乙醇掺混比例和喷射定时对二甲醚-乙醇混合燃料燃烧及排放的影响。结果表明:随乙醇比例的增加,滞燃期延长,燃烧持续期缩短,最大压力升高率上升。随喷射推迟,滞燃期延长,燃烧相位延后,燃烧持续期在纯二甲醚时延长,而在掺混乙醇时则先延长后缩短,最大压力升高率先下降后上升。掺混乙醇和推迟喷射使预混燃烧比例增加。随喷射推迟,混合燃料的排气温度升高,喷射推迟到上止点后,排气温度随乙醇比例的增加而升高,排气温度高,则废气能量高,增压器增压比大,进气流量大,导致缸内压缩压力升高。在上止点前喷射时,掺混乙醇能使HC和CO排放保持在较低范围的同时,一定程度降低NO_x排放,掺混15%的乙醇较纯二甲醚最大降低约11%NO_x排放。随推迟喷射,NO_x排放降低,最大降幅达52%,在过分推迟燃料喷射时,因热效率低,循环喷射量增加,含15%乙醇混合燃料的NO_x排放会高于纯二甲醚。HC和CO排放随喷射推迟而升高,且升高幅度增大。  相似文献   

20.
天然气/柴油双燃料发动机燃料喷射及着火特性   总被引:1,自引:0,他引:1  
基于计算流体动力学(CFD)软件CONVERGE模拟了缸内高压直喷式柴油微引燃液化天然气(LNG)发动机的燃料喷射混合以及着火过程,校核和验证了湍流模型对模拟结果的影响,分析了天然气喷射正时、天然气喷射持续期及柴油与天然气射流中心轴线的夹角对缸内柴油和天然气射流发展、混合和着火的影响.结果表明:Smagorinsky大...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号