首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用微弧氧化技术和氟硅烷修饰在医用Ti-6Al-4V合金表面构建超疏水涂层。考察微弧氧化电压对涂层表面形貌及粗糙度的影响,分析微弧氧化和超疏水涂层的相组成及元素化学状态以探讨超疏水表面的形成机制。初步研究超疏水试样的细胞毒性和抗菌性能。结果表明,随着微弧氧化电压的增加,涂层的表面粗糙度增大,而显微结构均匀性在440V最佳。经疏水处理后,试样的表面粗糙度较微弧氧化试样有所下降,而接触角随着电压的增加而先增大后减小,在440 V时获得最大值154.9°。微弧氧化涂层主要由锐钛矿及少量金红石TiO2相组成,并含有大量的–OH和一些磷的化合物,而超疏水试样表面存在大量的CF3、CF2和Si-O基团。全氟辛基三氯硅烷通过水解和脱水反应将氟硅烷嫁接于微弧氧化涂层上而形成超疏水表面。超疏水试样属于1级无毒材料,其细胞增殖率与Ti-6Al-4V合金无显著差异。此外,超疏水试样还具有一定的抗菌性,相对微弧氧化试样,其抗菌率可达93.03%。  相似文献   

2.
Mg-Mn-Ce镁合金表面超疏水复合膜层的制备及耐腐蚀性能   总被引:2,自引:0,他引:2  
采用微弧氧化技术和有机镀膜技术相结合的复合处理方法实现Mg-Mn-Ce镁合金表面改性,获得超疏水复合膜层,研究微弧氧化膜的表面特征、有机镀膜电化学反应过程、复合膜层的润湿特性和耐腐蚀性能。结果表明:镁合金经微弧氧化处理后由于微弧氧化膜表面呈微纳多孔结构,表现为超亲水特性,其蒸馏水的静态接触角接近0°;在微弧氧化膜上经有机镀膜后,其形成的有机薄膜的静态接触角高达173.3°,表现出优良的超疏水特性。镁合金经微弧氧化处理后具有良好的耐腐蚀性能,经有机镀膜超疏水复合处理后,耐腐蚀性能得到进一步提高。复合膜层在3.5%NaCl溶液中,与基体相比动电位极化腐蚀电流密度减小了3个数量级、而电化学阻抗提高了3个数量级,耐腐蚀性能明显改善。微弧氧化与有机镀膜相结合的复合处理使镁合金表面在实现超亲水-超疏水功能转换的同时显著提高镁合金的耐腐蚀性能。  相似文献   

3.
王华  刘艳艳 《表面技术》2023,52(11):1-22, 127
镁合金是一种有发展前途的绿色工程金属材料,但其较差的抗腐蚀性能限制了它的大规模应用。对镁合金表面进行超疏水处理,能够极大地提高镁合金的耐腐蚀性能。当超疏水试样浸泡在腐蚀溶液中时,该结构将在腐蚀介质中形成固-气-液界面层,减少镁合金表面与腐蚀介质之间的接触面积,从而降低腐蚀速度。超疏水表面需要满足微纳米结构和低表面能2个必要条件。可以采用二步法或一步法在镁合金表面制备超疏水表面,详细介绍了在镁合金表面构造微纳米结构的方法,包括激光处理、机加工、化学刻蚀、化学镀、电化学沉积、阳极氧化、微弧氧化、水热合成和喷涂等方法。超疏水表面一旦受到机械损伤,微纳米结构无法满足条件,超疏水表面的“气垫效应”消失,腐蚀介质就会直接与微纳米结构接触,因此需要保证构建的微纳米粗糙结构对镁基体具有良好的保护作用并具有自愈功能。通过制备复合涂层,提高下层微纳米结构的自愈合性能,上层涂层的超疏水性与下层涂层的良好物理屏障能力的协同效应可以改善涂层的长久耐腐蚀性能。综述了在镁合金上制备具有良好耐腐蚀性能的复合超疏水表面的方法,并对镁合金超疏水表面防护技术的研究方向进行了展望。  相似文献   

4.
超声-微弧氧化医用镁合金体外降解性研究   总被引:1,自引:0,他引:1  
利用声电化学原理,将超声波引入到微弧氧化过程中处理医用镁合金,以提高其耐蚀性能。采用40 kHz功率分别为0、60、90、120、150、180 W的超声波,研究超声波功率对涂层在生理盐水中耐蚀性能的影响。测定涂层的接触角,研究涂层亲水与疏水性能。利用电化学腐蚀方法测定镁合金平衡腐蚀电位、电流密度和线性极化电阻。采用SEM、EDX和XRD对涂层的表面及断面形貌、涂层表面及腐蚀涂层表面的钙磷比率、腐蚀产物的相组成进行分析。结果表明:超声波增加了涂层及腐蚀层表面的钙磷比率,从而可以提高涂层材料的生物活性,同时还提高了微弧氧化生物涂层的耐蚀性能。与未加入超声波处理的微弧氧化镁合金的耐蚀性相比,当超声波功率为120 W时,微弧氧化涂层的接触角达到最大值91.95o,具有疏水性,腐蚀平衡电位–0.404 V,其较基体的腐蚀电位提高了1.032 V,其线性极化电阻达到最大值,耐蚀性能最佳。  相似文献   

5.
王艳秋  吴昆  郑明毅 《金属学报》2007,43(6):631-636
采用微弧氧化表面处理技术在SiCw/AZ91镁基复合材料表面制备保护性涂层.通过与AZ91镁合金对比,研究镁基复合材料的微弧氧化行为及其形貌特征,并采用电化学方法评价了微弧氧化涂层的耐腐蚀性能.结果表明,SiC晶须的存在影响了基底材料表面阻挡层的形成,使复合材料的微弧氧化行为不同于基体合金.与合金相比,在恒电流模式下进行微弧氧化的过程中复合材料的电压随时间的演变趋势不够理想,而且在相同工艺条件下复合材料的起弧时间比合金要长.复合材料在微弧氧化过程中偶尔会出现烧蚀现象.虽然SiC晶须会影响复合材料表面涂层的形成,微弧氧化处理仍然能够增强镁基复合材料的耐腐蚀性能,使其自腐蚀电位提高,腐蚀电流降低.当采用恒压模式制备涂层时,涂层耐腐蚀性能随电压的提高而增强.  相似文献   

6.
采用微弧氧化技术在AZ91镁合金表面制备陶瓷涂层,然后在该涂层表面通过磁控溅射镀铜技术制备复合膜层。研究了微弧氧化陶瓷层和复合膜层的表面物相组成、表面粗糙度、表面及截面形貌、表面润湿性及电化学性能。结果表明:AZ91镁合金经微弧氧化处理后由于微弧氧化陶瓷层呈微纳粗糙多孔结构,表现为亲水特性,其物相由MgO、Mg及Mg_2SiO_4组成;而微弧氧化陶瓷层经磁控溅射镀铜处理后表面获得较为致密的具有疏水特性的铜层,表面粗糙度降低;四探针测试结果说明复合膜层的方阻为16.2 m?·~(-1),导电性良好;动电位极化曲线测试结果说明复合膜层与基体镁合金相比,其腐蚀电流密度降低10%,腐蚀电位提高了约0.36 V,腐蚀极化电阻提高约80倍;与微弧氧化陶瓷层相比,复合膜层的腐蚀电位提高了约0.24 V,但其腐蚀电流密度和腐蚀极化电阻有所下降。研究结果表明,微弧氧化与磁控溅射镀铜相结合的复合处理技术可在不降低镁合金陶瓷层耐蚀性的基础上显著提高其表面的导电性能。  相似文献   

7.
利用微弧氧化技术对AZ91D镁合金在铝酸盐和锫盐溶液中进行表面陶瓷化处理.采用IM6e型电化学工作站,对微弧氧化镁合金进行电化学稳态电流/电位极化曲线测量以及塔费尔斜率测量.通过电化学测量对微弧氧化镁合金的腐蚀行为进行分析.结果表明:镁合金经微弧氧化处理后,点蚀的发生受到限制,镁合金微弧氧化试样的腐蚀电流较原始试样降低4~6个数量级.镁合金微弧氧化试样的耐蚀等级均达到耐蚀以上的等级.  相似文献   

8.
为提高镁合金微弧氧化陶瓷涂层性能,降低设备能耗,以镁合金微弧氧化涂层的耐腐蚀性作为评价标准,以电流密度、频率、占空比3个电参数和微弧氧化处理时间为优化对象,将神经网络和遗传算法结合来优化镁合金微弧氧化工艺中的电参数和处理时间,神经网络的学习样本采用均匀设计,达到布点均匀、减少实验次数的目的,得到的优化结果为:电流密度1.3A/dm2,频率700Hz,占空比20%,处理时间20min。  相似文献   

9.
利用自主开发的微弧氧化工艺处理了实际镁合金压铸试样,并探讨了微弧氧化膜层对镁合金基体拉伸性能的影响。研究发现,微弧氧化处理的镁合金压铸件试样表面的膜层厚度均匀、色泽均一;膜层含有MgO、MgAl2O4及Mg2SiO4等物相,且MgO含量随处理时间的延长而增加;处理时间合适时,膜层几乎不影响镁合金基体的拉伸性能,但随着处理时间的增加,由于膜层中存在的诸多缺陷而使基体的拉伸性能开始有所下降。  相似文献   

10.
采用微弧氧化与有机镀膜技术对AZ31镁合金进行复合表面改性,分别对微弧氧化膜的形成过程及表面特征、微弧氧化膜表面有机镀膜过程、微弧氧化膜与复合膜的润湿性及耐腐蚀性进行研究.结果表明镁合金经微弧氧化改性后,由于表面具有微纳多孔粗糙结构,同时具有较高的表面自由能和极性分量,与蒸馏水接触时存在较强的范德华力和毛细管吸附力,且对强极性水分子具有很强的相溶性,使其蒸馏水的静态接触角接近0°,表现为超亲水特性;而微弧氧化膜表面再经有机镀膜复合改性后,具有较低的表面自由能,对强极性水分子具有一定的排斥作用,使其静态接触角达到113.7°,表现为疏水特性;微弧氧化膜经有机镀膜表面改性后,耐腐蚀性能明显改善,疏水复合膜层在0.1mol/LNaCl溶液中,与基体相比,其动电位极化腐蚀电流密度减小3个数量级,而电化学阻抗提高3个数量级,表现为类似纯电容行为.  相似文献   

11.
在NaOH电解液中,对ZK60镁合金进行微弧氧化处理。研究了微弧氧化过程的电压-时间曲线、微弧氧化电流、氧化时间对微弧氧化膜层的显微形貌和厚度的影响,测试了氧化膜的耐蚀性能。研究结果表明:随着微弧氧化电流和时间的增加,表面膜层厚度增加,但膜层中的微孔直径增加,表面粗糙度增加,氧化膜质量降低。在NaOH电解液中,微弧氧化电流为3A、氧化3min后,ZK60镁合金表面形成的氧化膜质量最好,厚度约为19.8μm。XRD分析表明微弧氧化处理后试样表面膜层由MgO相组成。耐腐蚀测试表明微弧氧化后样品的质量出现先增加而后降低的现象,其失重和析氢量均比未微弧氧化样品少,同时溶液pH值变化较慢,这说明微弧氧化后样品的耐腐蚀性提高。  相似文献   

12.
镁合金材料表面处理技术研究新动态   总被引:1,自引:1,他引:0  
对镁合金材料近年来在表面微弧氧化、表面超疏水膜层、激光表面改性以及溶胶-凝胶涂层四个方面的研究动态进行了简要综述。镁合金材料采用双极性和混合(单极和双极的组合)电流模式微弧氧化处理的膜层生长速率较快,膜层更致密且硬度更高,膜层的耐磨性和耐腐蚀性能更好。在高浓度苛性碱为主的强碱性溶液中添加适量的添加剂,经短时间(~3 min)微弧氧化处理,即可获得中性盐雾试验达200 h以上的致密耐腐蚀膜层。采用水热法、电化学刻蚀、微弧氧化和电沉积等方法,可在镁合金材料表面形成具有微纳米多级结构的粗糙表面,再用低表面能物质对粗糙表面进行修饰,可在镁合金表面获得超疏水膜层,从而提高镁合金的耐腐蚀性能。镁合金材料激光表面改性处理可改善其表面成分,细化晶粒,使组成相分布更均匀以及提高表层的固溶度极限,从而提高镁合金材料的耐腐性能、摩擦磨损抗力和疲劳强度。溶胶-凝胶有机/无机杂化涂层与镁合金基材良好的附着力,不仅可提高镁合金的耐腐蚀性能,还可以使镁合金具有抗氧化、耐磨损、防水性以及其他性能。  相似文献   

13.
通过化学刻蚀,以硬脂酸为修饰剂,成功实现AM60镁合金表面的超疏水改性,并采用扫描电镜、接触角仪、电化学工作站等对处理前后的AM60镁合金表面的微观形貌、疏水性能和耐腐蚀性能进行分析。结果表明:AM60镁合金仅经盐酸刻蚀处理后,表现为超亲水性,再经硬脂酸浸泡后才达到疏水的效果;随着硬脂酸浸泡时间的增加,该合金的表面接触角呈现先增加后减小的趋势,在浸泡12 h时,接触角最大为150.18°,滚动角小于10°,此时合金表面具有超疏水性能;同时,相比于未处理的AM60镁合金而言,超疏水改性后样品的腐蚀电流密度降低了88.19%,腐蚀电压提高了19.72%,耐腐蚀性能得到明显改善;而且,超疏水改性还可提高合金对粉尘和水溶液的自清洁性能。  相似文献   

14.
为了提高烧结NdFeB永磁体的耐蚀性,在铝酸盐溶液中采用二步微弧氧化工艺在烧结NdFeB永磁体表面制备了氧化铝陶瓷涂层。微弧氧化过程中,电压-时间曲线可大致分为4个阶段,与阀金属处理的曲线基本一致。烧结NdFeB表面制备的涂层呈现出典型的微弧氧化多孔形貌,厚度大约为5μm。涂层中仅含有Al_2_O3结晶相,并含有少量的Fe、Nd和P元素。微弧氧化处理后,烧结NdFeB的表面粗糙度有所增加,耐蚀性较基体提高了1个数量级。然而,微弧氧化处理后烧结NdFeB磁体的剩磁和最大磁能积较未处理NdFeB有所下降。  相似文献   

15.
在硅酸盐-磷酸盐复合电解质中添加羟基磷灰石纳米粉体和氢氧化钠进行改性处理,然后采用该电解质对医用镁合金丝材进行微弧氧化处理。研究电解质中氢氧化钠含量对镁合金丝材表面陶瓷涂层微观组织结构和性能的影响。结果表明:对电解质改性后,镁合金丝材的微弧氧化起弧电压大降低且氧化速度更快。镁合金丝材在添加2 g/L氢氧化钠的电解质中进行微弧氧化处理后的耐腐蚀性能改善幅度显著。在模拟体液的早期浸泡过程中,微弧氧化处理过的镁合金丝材表现为缓慢且稳定的腐蚀降解。在浸泡28 d后,镁合金丝材表面的保护性陶瓷涂层尚未破坏,但浸泡60 d后,镁合金丝材出现了显著的腐蚀降解。  相似文献   

16.
采用微弧表面处理技术(微弧氧化MAO和微弧复合MCC)在AZ31B镁合金基体上制备出不同断面结构的防护涂层。通过电化学腐蚀及腐蚀疲劳测试方法,研究了MAO、MCC涂层的电化学腐蚀及腐蚀疲劳性能。结果表明,生长10 min的MAO涂层具有较好的耐电化学腐蚀性能。MAO涂层表面存在微孔和微裂纹,在应力条件下微孔和微裂纹作为疲劳断裂的裂纹萌生点,可加速裂纹的萌生与扩展,使其腐蚀疲劳寿命相较AZ31B合金基体降低了55%。而具有MCC涂层的AZ31B合金试样腐蚀疲劳极限为(64.0±5.4) MPa,比AZ31B合金基体提高了59%。在低应力载荷下(<80 MPa),微弧复合涂层试样的腐蚀疲劳强度得到明显提高。  相似文献   

17.
研究了2种化学试剂和2种表面改性剂,通过4种不同的组合方式在镁合金表面制备超疏水膜层的简单方法。先分别使用氯化铜和硫酸锌对镁合金进行化学刻蚀,再通过油酸和硬脂酸对其进行表面修饰。改性以后试样的静态接触角均达到150o以上,滚动角在6.5o左右;且试样的超疏水性能保持稳定,在空气中暴露半年之久后,其接触角依然保持在150o以上,变化幅度非常小。对4种不同的超疏水试样进行电化学测试,比较发现采用氯化铜刻蚀后经过硬脂酸自组装得到的超疏水表面拥有最好的耐腐蚀性,其自腐蚀电位达到–1.11 V,相比于镁合金基体提高了0.33 V,且容抗弧直径是基体的6~7倍。  相似文献   

18.
采用铝酸盐为主的碱性电解液,在2024铝合金表面制备微弧氧化涂层。通过表面形貌、涂层厚度与生长速率,研究了氧化时间对涂层结构的影响;通过动电位极化曲线及电化学阻抗谱研究了微弧氧化涂层在NaCl溶液中的腐蚀行为。结果表明:微弧氧化涂层表面形成了许多大小不一的微孔,表面的陶瓷颗粒以搭桥的方式在表面不同部位堆积。随着氧化时间的延长,该微弧氧化涂层的厚度逐渐增大,生长速率减慢;经过不同氧化时间的处理,与铝合金基体相比,涂层的腐蚀电压升高,腐蚀电流密度有不同程度的减小;氧化时间20 min的微弧氧化涂层的腐蚀电流密度低、腐蚀电压高,膜层的耐蚀性能较好。  相似文献   

19.
利用微弧氧化和化学镀镍在AZ91D镁合金表面制备了复合涂层,采用动电位极化曲线测试和电化学阻抗测试等方法研究微弧氧化和化学镀镍复合涂层在3.5%NaCl溶液中的腐蚀行为。结果表明,复合涂层使基体镁合金的腐蚀电位提高了1.339V,自腐蚀电流密度降低为基体的1/10;在浸泡初期和中期,复合涂层通过阻碍腐蚀介质向基体的传质和腐蚀产物的输运提高了镁合金的耐腐蚀性,经270h的浸泡,复合涂层完全失效。  相似文献   

20.
采用激光加工结合构筑纳米结构,并涂覆低表面能物质的方法制备了镁合金超疏水表面。使用光学显微镜和扫描电镜观察表面形貌,接触角测量仪测量超疏水表面的静态接触角,电化学分析方法测试试样在模拟生物体液中的腐蚀性能。结果表明:激光加工参数对超疏水表面形貌和性能具有重要的影响。当加工电流为13 A,点阵间距为50μm时,表面微/纳米结构均匀,静态接触角达到最大值161.7°。超疏水试样的腐蚀电位增加,极化电阻增大,腐蚀电流降低,腐蚀速率降低31%,有效提高了WE43镁合金的耐生物体液腐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号