首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M. V. Bell  J. R. Dick  Cs. Buda 《Lipids》1997,32(10):1085-1091
The molecular species compositions of the main diacyl phosphoglyceride classes and ether-linked subclasses from sperm of three species of fish, sea bass Dicentrarchus labrax, Atlantic salmon Salmo salar and Chinook salmon Onchorhynchus tsawytscha, were determined. The phospholipids from sperm were highly unsaturated, dipolyunsaturated fatty acid (diPUFA) molecular species comprised 64.6 to 71.8% of phosphatidylserine (PS), 10.1 to 17.4% of phosphatidylethanolamine (PE), and 3.3 to 10.1% of phosphatidylcholine (PC). In sea bass sperm, di22∶6n-3 phospholipid was the predominant diPUFA molecular species, but in both salmon species 22∶5n-3/22∶6n-3 was also a major constituent of PS. Phospholipids containing 22∶6n-3 dominated in sea bass sperm with 16∶0/22∶6n-3 as a major component of PC and PE, and 18∶0/22∶6n-3 of PE and PS in addition to di22∶6n-3 in the latter two classes. In contrast, both salmon species contained much more 20∶5n-3 and less 22∶6n-3 so that saturated/20∶5n-3 and monounsaturated/20∶5n-3 molecular species were more abundant than the corresponding molecules containing 22∶6n-3. Ether-linked lipids comprised 11.3–36.3% of choline and ethanolamine phosphoglycerides in each fish species. Molecular species containing 22∶6n-3 were the major components of 1-O-alkyl-2-acyl-glycerophosphocholine, especially 16∶0a/22∶6n-3 in sea bass and 18∶1a/∶6n-3 in the two salmon species, while in 1-O-alk-1′-enyl-2-acyl-glycerophosphoethanolamine, 16∶0a/22∶6n-3 was the major component in both salmon and 18∶0a/22∶6n-3 in sea bass with 18∶1a/22∶6n-3 abundant in all three species. In Atlantic salmon 1-O-alkyl-2-acylglycerophosphoethanolamine comprised 24.6% of ethanolamine glycerophospholipids which were predominantly 16∶0a/22∶6n-3 and 18∶1a/22∶6n-3. Phosphatidylinositol from sperm was dominated by stearoyl/C20 PUFA molecular species, in sea bass overwhelmingly 18∶0/20∶4n-6, while in both salmon species 18∶0/20∶4n-6 and 18∶0/20∶5n-3 were equally abundant.  相似文献   

2.
The phospholipid composition was determined for the amebocyte of the primitive arthropod Limulus polyphemus. The total fatty acid composition of the cells' lipids was analyzed by gas chromatography/mass spectrometry (GC/MS) of fatty acid methyl esters (FAME). The FAME analysis revealed high levels of 20-carbon polyunsaturated fatty acids (PUFA), especially arachidonic (20∶4n-6) and eicosapentaenoic (20∶5n-3) acids. Almost 20% of the total lipid profile was comprised of dimethyl acetals of 16- to 20-carbon chain lengths, indicative of plasmalogens in the phospholipid pool. Phospholipids, analyzed by high-pressure liquid chromatography, included phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylinositol (PI), sphingomyelin (SPH), and cardiolipin (CL). PE and PC levels predominated at 42.2 and 36.3%, respectively. Smaller amounts of PS (9.0%) and PI (6.2%) were present, as well as low levels of SPH (4.6%), CL (1.6%), and trace amounts of lysophosphatidylcholine. The major phospholipid species, PE, PC, PS and PI, were collected and their molecular species were examined by electrospray-ionization mass spectrometry. The molecular species within the phospholipid classes reflected the high levels of PUFA seen in the total lipid profile. PI was mainly composed of 18∶0a/20∶4. Over half of the PS consisted of 18∶0a/18∶1 and 18∶0a/20∶4. The major PE species were 20∶1p/20∶5, 20∶1p/20∶4, 18∶0p/20∶5, and 18∶0p/20∶4. PC had the largest distribution of molecular species, and its most abundant species were 16∶0e/20∶5, 16∶0e/20∶4, and 16∶0p/20∶4. The presence of 16∶0e/20∶4 is the first documentation of a specific precursor to platelet-activating factor in an invertebrate hemocyte. Note: at the sn-1 position: [a=1=O-acyl, e=1-O-alkylether, and p=1-O-alk-1′-enyl (plasmalogen)].  相似文献   

3.
The lipid composition of the pineal organ from the rainbow trout (Oncorhynchus mykiss) was determined to establish whether the involvement of this organ in the control of circadian rhythms is reflected by specific adaptations of lipid composition. Lipid comprised 4.9% of the tissue wet weight and triacylglycerols were the major lipid class present (47% of total lipid). Phosphatidylcholine (PC) was the principal polar lipid, and smaller proportions of other phospholipids and cholesterol were also present. Plasmalogens contributed 11% of the ethanolamine glycerophospholipids (EGP). No cerebrosides were detected. The fatty acid composition of triacylglycerols was generally similar to that of total lipids in which saturated, monounsaturated and polyunsaturated fatty acids (PUFA) were present in almost equal proportions. Each of the polar lipid classes had a specific fatty acid composition. With the exception of phosphatidylinositol (PI), in which 20∶4n−6 comprised 27.4% of the total fatty acids, 22∶6n−3 was the principal PUFA in all lipid classes. The proportion of 20∶5n−3 never exceeded 6.0% of the fatty acids in any lipid class. The predominant molecular species of PC were 16∶0/22∶6n−3 and 16∶0/18∶1, which accounted for 33.2 and 28.5%, respectively, of the total molecular species of this phospholipid. Phosphatidylethanolamine (PE) contained the highest level of di-22∶6n−3 (13.0%) of any phospholipid. There was also 4.9% of this molecular species in phosphatidylserine (PS) and 4.1% in PC. In PE, the species 16∶0/22∶6, 18∶1/22∶6 and 18∶0/22∶6 totalled 45.1%, while in PS 18∶0/22∶6 accounted for 43.9% of the total molecular species. The most abundant molecular species of PI was 18∶0/20∶4n−6 (37.8%). The lipid composition of the pineal organ of trout, and particularly the molecular species composition of PI, is more similar to the composition of the retina than that of the brain. Molecular species are abbreviated as follows: e.g., 16∶0/22∶6 PC is 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine.  相似文献   

4.
The molecular species composition of phosphatidylinositol (PI) purified from four different tissues from cod was found to show large tissue-specific differences. In brain 18∶0/20∶5 was the most abundant species (40.8%) followed by 18∶1/20∶5 (13.5%). In retina, 24–26% each of PI was the 16∶0/22∶6 and 18∶0/20∶4 species with 16–18% each of 18∶0/20∶5 and 18∶0/22∶6. In liver, almost half of the PI was 18∶0/20∶4 with 18% 18∶1/20∶4. In contrast, muscle contained almost 40% of 18∶0/22∶6 with 10–14% each of 18∶0/20∶4, 18∶0/20∶5 and 18∶1/22∶6. Molecular species are abbreviated as follows:e.g., 18∶0/20∶4 PI is 1-stearoyl-2-eicosatetraenoyl-sn-glycero-3-phosphoinositol.  相似文献   

5.
M. V. Bell  J. R. Dick 《Lipids》1991,26(8):565-573
The molecular species composition of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) from white muscle, liver, retina and brain of cod (Gadus morhua) were determined by high-performance liquid chromatography of the respective 1,2-diacylglycerol 3,5-dinitrobenzoyl derivatives. A minimum of 69 diacyl species was identified. In muscle and liver saturated fatty acid/polyunsaturated fatty acid (PUFA) and monounsaturated fatty acid/PUFA molecular species were predominant, particularly 16∶0/20∶5 and 16∶0/22∶6 in PC, 16∶0/22∶6 and 18∶1/22∶6 in PE and 18∶0/22∶6 and 18∶1/22∶6 in PS. Didocosahexaenoyl species were major components of PC, PE and PS from retina, comprising 29.3, 71.8 and 59.7% of the respective totals. Didocosahexaenoyl species were also abundant in PE and PS from brain, accounting for 13.8 and 24.0% of the totals, respectively. DiPUFA species were important in muscle, totalling 21.2% in PC and 38.3% in PE. PC from all tissues had the largest amounts of species containing only saturated or monounsaturated fatty acids, accounting for 59.8% of PC from brain, including 12.8% of 18∶1/24∶1 plus 24∶1/18∶1.  相似文献   

6.
The molecular species composition of the major glycerophospholipids from white matter of human brain were determined by high-performance liquid chromatography of the 3,5-dinitrobenzoyl derivatives of the corresponding diradylglycerols. In phosphatidylcholine (PC) and phosphatidylserine (PS), molecular species containing only saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) comprised 85.7 and 82.4% of the respective totals, with 18∶0/18∶1 predominant in PS and 16∶0/18∶1 in PC. These molecular species were also abundant in phosphatidylethanolamine (PE), but in this phospholipid species containing polyunsaturated fatty acids (PUFA), largely 18∶0/22∶6n−3 and 18∶0/20∶4n−6, accounted for over half the total; 18∶1/18∶1 was also abundant in PE. In contrast, 1-O-alk-1′-enyl-2-acylsn-glycero-3-phosphoethanolamine (GPE) had much more SFA- and MUFA-containing species, predominantly 16∶0a/18∶1, 18∶0a/18∶1 and 18∶1a/18∶1, with low amounts of species containing 20∶4n−6 and 22∶6n−3. In alkenylacyl GPE, 22∶4n−6 was the major PUFA and 16∶0a/22∶4n−6 and 18∶1a/22∶4n−6 the main PUFA-containing species. There was six times more 22∶6n−3, twice as much 20∶4n−6 and half the amount of 22∶4n−6 in PE as compared to alkenylacyl GPE. Molecular species are abbreviated as follows:e.g., 16∶0/18∶1 PE is 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine; the corresponding alkenylacyl species, 1-O-hexadec-1′-enyl-2-oleoyl-sn-glycero-3-phosphoethanolamine is 16∶0a/18∶1.  相似文献   

7.
The incorporation of 18∶2n−6, 18∶3n−3, 20∶4n−6 and 20∶5n−3 was greater at 10°C than at 22°C in Atlantic salmon (AS), rainbow trout (RTG-2) and turbot (TF) cells. However, there were generally no significant differences between the amount of incorporation of all four polyunsaturated fatty acids (PUFA) into total lipid within a cell type at either 22°C or 10°C. The distributions of the PUFA between individual phospholipid classes at 22°C was essentially the same in AS and TF cells—with the C18 PUFA the order of incorporation in these cells was phosphatidylcholine (PC) > phosphatidylethanolamine (PE) > phosphatidic acid/cardiolipin (PA/CL); with 20∶4n−6 the order was PE and phosphatidylinositol (PI)>PC; with 20∶5n−3, PE>PC. In RTG-2 cells at 22°C the distributions of the C18 PUFA were similar to the other cell lines, but with 20∶4n−6 the order was PC>PI>PE, and with 20∶5n−3 it was PC>PE. At 10°C the incorporation of C18 PUFA into PC increased and into PE and PA/CL decreased, in general, in all cell lines. Incorporation of 20∶5n−3 into PC and PE was increased and decreased at 10°C, respectively, in AS and TF cells, whereas in RTG-2 cells the changes at 10°C were opposite i.e., increased in PE and decreased in PC. With 20∶4n−6, incorporation into PC at 10°C was increased in all cell lines with decreased incorporation into PI in AS and RTG-2 cells and into PE in AS and TF cells, whereas incorporation of 20∶4n−6 into PE increased in RTG-2 cells. The metabolismvia desaturation and elongation of the n−3 PUFA was greater than that of the equivalent n−6 PUFA in all cell lines, irrespective of temperature. There was less conversion of the C18 PUFA at 10°C than at 22°C in RTG-2 and TF cells, but the conversion of 18∶3n−3 by AS cells was increased at 10°C. Temperature had no effect on the conversion of the C20 PUFA.  相似文献   

8.
Adequate accumulation of polyunsaturated essential fatty acids, in particular docosahexaenoic acid (22∶6n−3), into membrane phospholipids is critical for optimal fetal brain development. This process is maximal during the period of rapid neurite outgrowth, neuritogenesis, which precedes the major growth phase, myelination. There is no information about differential changes during gestation to individual brain phospholipid molecular species which contain 22∶6n−3. Such details of brain development would be concealed by total fatty acid analysis of isolated phospholipid classes. We have detailed phosphatidylcholine (PC) and phosphatidylethanolamine (PE) molecular species compositions in developing fetal guinea pig brain. Total brain PC concentration increased substantially between 40 and 68 (term) d of gestation, corresponding to myelination, while PE increased in a biphasic manner between 25–35 d, which was coincident with onset of neuritogenesis, and 40–68 d. Fetal brain development was accompanied by complex changes in the concentration of individual phospholipid molecular species. During early gestation (25–40 d) 22∶6n−3 was enriched in both PC and PEsn−1 16∶0 molecular species. However, between 40 d and term there was no further increase in brain PC 22∶6n−3 content, while brain PE was significantly enriched in both PE 18∶1/22∶6 and PE18∶0/22∶6. We hypothesize that accumulation of 22∶6n−3 intosn−1 18∶1 and 18∶0 species represents establishment of a 22∶6n−3-containing membrane PE pool which may be turned over more slowly thansn−1 16∶0 species. Identification of specific changes in membrane phospholipids which are associated with defined events in brain development may provide a basis for assigning functional roles to individual molecular species.  相似文献   

9.
Zabrouskov V  Knowles NR 《Lipids》2002,37(3):309-315
Changes in sterols and the molecular species composition of polar lipids from microsomal membranes were characterized as a prerequisite to determining how lipid chemistry affects membrane susceptibility to peroxidation during aging of potato tubers. Polar lipid content of the microsomal fraction fell 17% (protein basis) as tubers aged from 2 to 38 mon at 4°C. In younger seed-tubers, PC concentration (protein basis) was the highest, followed by digalactosyldiacylglycerol (DGDG), PE, monogalactosyldiacylglycerol (MGDG), and PI. PC and PE increased 14 and 27%, respectively, whereas glycolipids fell 64 and PI 43% with advancing age. These changes resulted in PC and PE dominating the microsomal membrane lipids of 38-mon-old tubers. Nonpositional analysis of lipid molecular species across lipid pools showed an increase in 16∶0/18∶3, 18∶3/18∶3, and 18∶2/18∶3 (PC and PE only), and a decline in 18∶2/18∶2 and 16∶0/18∶2 (except for MGDG) with advancing tuber age. The increase in 18∶3-bearing species effected a linear increase in double-bond index (DBI) of PC and PE during aging. The DBI of DGDG did not change with age; however, it fell 65% for MGDG, resulting in an overall decrease in average microsomal DBI. In addition, Δ5-avenasterol and stigmasterol concentrations increased 1.6- and 3.3-fold, respectively, effecting a significant increase in the sterol/phospholipid ratio with advancing tuber age. The increase in sterol/phospholipid ratio and the possibility that the increased unsaturation of microsomal membranes reflects a compensatory response to maintain optimal membrane function in light of the age-induced loss of galactolipid and PI are discussed.  相似文献   

10.
M. V. Bell  J. R. Dick 《Lipids》1993,28(1):19-22
Ethanolamine glycerophospholipids from the brains of both trout and cod comprised 36–38% of 1-O-alk-1′-enyl-2-acyl-glycerophosphoethanolamine (GPE) determined using two methods. In 1-O-alk-1′-enyl-2-acyl-GPE from trout brain, the main molecular species were 18∶1a/18∶1, 18∶0a/18∶1 and 16∶0a/18∶1, which totalled 63.3%, while polyunsaturated fatty acid (PUFA) containing species totalled only 18.2%. 1-O-Alk-1′-enyl-2-acyl-GPE from cod brain was much more unsaturated with PUFA containing species totalling 52.6%, of which 18∶0a/20∶5n−3, 18∶1a/20∶5n−3 and 18∶1a/22∶6n−3 were predominant. In cod 18∶1a/18∶1, 18∶0a/18∶1 and 16∶0a/18∶1 were the only other species present at over 5% each, totalling 31.8%. In both cod and trout, small amounts of species containing 22∶4n−6 were found. The results of this and earlier studies indicate that there is considerable specificity of composition at the level of molecular species between different lipid classes and subclasses. Molecular species of 1-O-alk-1′-enyl-2-acyl-GPE are abbreviated as follows:e.g., 16∶0a/18∶1 GPE is 1-O-hexadec-1′-enyl-2-oleoyl-sn-glycero-3-phosphoethanolamine. The corresponding diacyl species, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, is abbreviated as 16∶0/18∶1.  相似文献   

11.
Molecular species of 1-O-alk-1′-enyl-2-acyl-, 1-O-alkyl-2-acyl-, and 1,2-diacyl-sn-glycero-3-phosphoethanolamine (EPL) andsn-glycero-3-phosphocholine (CPL) of Japanese oysterCrassostrea gigas were analyzed by selectedion monitoring gas chromatography/mass spectrometry using electron impact ionization. The characteristic fragment ions, [RCH=CH+56]+ due to the alkenyl residue in thesn-1 position and [RCO+74]+ due to the acyl residue in thesn-2 position of alkenylacylglycerols, [R+130]+ due to the alkyl residue in thesn-1 position and [RCO+74]+ due to the acyl residue in thesn-2 position of alkylacylglycerols, [RCO+74]+ due to the acyl residues in thesn-1 and/orsn-2 positions of diacylglycerols, and [M−57]+ being indicative of the corresponding molecular weight, were used for structural assignments. For alkenylacyl EPL and CPL, 19 and 16 molecular species were determined, respectively. Two molecular species, 18∶0alkenyl-22∶6n−3 and 18∶0-alkenyl-22∶2-non-methylene interrupted diene (NMID), amounted to 53.2% and 47.9%, respectively. The alkylacyl EPL and CPL consisted of 16 and 20 molecular species, respectively, and the prominent components were 18∶0alkyl-22∶2NMID, 20∶1alkyl-20∶1n−11 (27.4%) and 20∶1alkyl-20∶2NMID (16.3%) in the former, and 16∶0alkyl-20∶5n−3 (23.0%) and 16∶0alkyl-22∶6n−3 (21.6%) in the latter. For the diacyl EPL and CPL, 14 and 51 molecular species were determined, respectively. The major molecular species were 18∶0–20∶5n−3 (37.4%), 16∶0–20∶5n−3 (14.2%) and 18∶1n−7–22∶2NMID (13.2%) in the former, and 16∶0–20∶5n−3 (33.4%) and 16∶0–22∶6n−3 (22.3%) in the latter. It was found that there were significant differences in the molecular species between the alkylacyl and diacyl EPL and the alkylacyl and diacyl CPL; the number of molecular species was larger in CPL than in EPL, while the number of total carbons and double bonds of the major molecular species were larger in the EPL than in the CPL. Alkenylacyl EPL were similar to alkenylacyl CPL in molecular species composition.  相似文献   

12.
The fatty acid composition of individual phospholipids in subcellular fractions of sheep platelets and the asymmetrical distribution of phosphatidylethanolamine (PE) fatty acyl chains across the plasma membrane were examined. The main fatty acids of total lipid extracts were oleic (18∶1; 32–41%), linoleic (18∶2, 10–17%), stearic (18∶0; 13–15%), palmitic (16∶0; 11–15%) and arachidonic (20∶4; 8–12%) acids, with a saturated/unsaturated ratio of about 0.4. Each phospholipid class had a distinct fatty acid pattern. Sphingomyelin (SM) showed the highest degree of saturation (50%), with large proportions of behenic (22∶0), 18∶0 and 16∶0 acids. The main fatty acid in PE, phosphatidylserine (PS) and phosphatidylcholine (PC) was 18∶1n−9. Our findings suggest that fatty acids are asymmetrically distributed between thecholineversus the non-choline phospholipids, and also between plasma membranes and intracellular membranes. The transbilayer distribution of PE fatty acids in plasma membranes from non-stimulated sheep platelets was investigated using trinitrobenzenesulfonic acid (TNBS). A significant degree of asymmetry was found, which is a new observation in a non-polar cell. The PE molecules from the inner monolayer contained higher amounts of 18∶2 and significantly less 18∶1 and 20∶5 than those found in the outer monolayer, although no major differences were detected in the transbilayer distribution of total unsaturatedversus saturated PE acyl chains.  相似文献   

13.
Assessment has been made of the specificity of a purified phospholipase A2 from the 106,000×g pellet (microsomal fraction) of bovine grey matter which shows strong activity toward phosphatidylinositol (PI). In the first series of experiments involving the utilization as substrates of PI with different14C- or3H-labeled fatty acids in the 2-position, the purified phospholipase A2 most readily removed 16∶0 palmitic acid, followed by 18∶0 stearic acid, 18∶1 oleic acid and 20∶4 arachidonic acid. In the second series of experiments, the purified phospholipase A2 showed preferential action toward PI (100%) compared to phosphatidylcholine (PC, 62.5%), phosphatidic acid (PA, 32.6%), phosphatidylethanolamine (PE, 25.1%) and phosphatidylserine (PS, 21.5%), where each phosphoglyceride was labeled in the 2-position with [1-14C] oleic acid. In the third series of experiments, fatty acids were shown to cause inhibition of action of the purified phospholipase A2 on 1-acyl, 2-[1-14C] oleoyl PI in the order 20∶4>18∶1>18∶0>16∶0 which is the reverse order to that just noted. In the final series of experiments, the addition of the phosphoglycerides PC, PE, PS and PA in amounts of 5 or 10 μM caused either no inhibition (PE, 2%), slight inhibition (PC, 15%) or reasonably significant inhibition (PA, 20% and PS, 40%) of action of the purified phospholipase A2 on 1-acyl, 2-[1-14C]-oleoyl PI. The pattern of specificity observed for the purified phospholipase A2 combined with its microsomal location are the expected properties of a phospholipase A2 that might function in a deacylation-reacylation cycle for modifying the fatty acid distribution in PI.  相似文献   

14.
The effect of fish oil high in docosahexaenoic acid (22∶6n−3) and low in eicosapentaenoic acid (20∶5n−3) in formula on blood lipids and growth of full-term infants was studied. Infants were fed formula with about 15% oleic acid (18∶1), 32% linoleic acid (18∶2n−6), 4.9% linolenic acid (18∶3n−3) and 0, 0.10 or 0.22% 22∶6n−3, or 35% 18∶1, 20% 18∶2n−6, 2.1% 18∶3n−3 and 0, 0.11 or 0.24% 22∶6n−3 from 3 d to 16 wk of age (n=16, 18, 17, 21, 17, 16, respectively). The formulae had <0.1% 20∶5n−3 and no arachidonic acid (20∶4n−6). Breast-fed infants (n=26) were also studied. Plasma phospholipid and red blood cell (RBC) phosphatidylcholine (PC) and phosphatidylethanolamine (PE) fatty acids were determined at 3 d and 4, 8, and 16 wk of age. These longitudinal analyses showed differences in blood lipid 22∶6n−3 between breast-fed and formula-fed infants depending on the feeding duration. At 16 wk, infants fed formula with 0.10, 0.11% 22∶6n−3, or 0.22% 22∶6n−3 had similar 22∶6n−3 levels in the plasma phospholipid and RBC PC and PE compared with breast-fed infants and higher 22∶6n−3 than infants fed formula without 22∶6n−3. Formula with 0.24% 22∶6n−3, however, resulted in higher plasma phospholipid 22∶6n−3 than in breast-fed infants at 16, but not 4 or 8 wk of age. Plasma and RBC phospholipid 20∶4n−6 was lower in formula-fed than breast-fed infants, but no differences in growth were found. Higher blood lipid C20 and C22 n−6 and n−3 fatty acids in infants fed formula with 20% 18∶2n−6 and 2.4% 18∶3n−3 compared with 32% 18∶2n−6 and 4.9% 18∶3n−3 show the increase in blood lipid 22∶6n−3 in response to dietary 22∶6n−3 depending on other fatty acids in the formula.  相似文献   

15.
Saito H 《Lipids》2004,39(10):997-1005
The lipid and FA composition of the total lipids of the pearl oyster Pinctada fucata martensii, in different seasons and in different areas, were analyzed to clarify its lipid physiology and to estimate the possible influence of its prey phytoplankton. TAG and sterols were the major components in the neutral lipids in all conditions, whereas high levels of phospholipids (PE and PC) were found in the polar lipids. The major FA in the TAG in all samples were 14∶0, 16∶0, and 18∶0 as saturated FA (saturates); 16∶1n−7, 18∶1n−9, and 18∶1n−7 as monoenoic FA (monoenes); and 20∶4n−6 (arachidonic acid: AA), 20∶5n−3 (EPA), and 22∶6n−3 (DHA) as PUFA. The major components found in the polar lipids were 16∶0 and 18∶0 as saturates; 22∶2n−9, 15 and 22∶2n−7, 15 as non-methylene-interrupted dienes (NMID), and AA, 22∶3n−6, 9, 15, EPA, and DHA as PUFA. Although it is a marine animal, characteristically high levels of AA were found in both the TAG and phospholipids. This result suggests that lipids of P. fucata may be influenced by those of its phytoplanktonic prey. The increase in levels of NMID from TAG to PE with a decrease in those of monoenes suggests that the tissues of this species are able to biosynthesize only the less unsaturated PUFA, such as NMID. In particular, NMID derivatives are considered to be biosynthesized in the PE; thus, they might play a particular role in the membrane, because NMID were characteristically localized only in the PE.  相似文献   

16.
Incorporation of polyunsaturated fatty acids (PUFA), particularly 22∶6n−3, into fetal brain at specific gestational ages is critical for development of normal brain function. We have studied adaptations to maternal liver phospholipid molecular species compositions that may be related to the supply of PUFA to fetal brain. The increment of 22∶6n−3 in brain phosphatidylethanolamine (PE) was maximal at day 25 to day 35 of gestation, consistent with early prenatal development of guinea pig brain. At the same gestational ages, there was a transient increase in maternal liver concentration of 16∶0/22∶6 phosphatidylcholine (PC), which preceded the progressive increase in total PC concentration toward term (day 68). This effect was specific for thesn-1 16∶0 species, as, there was no significant increase in 18∶0/22∶6 PC concentration. These results are consistent with a specific role for 16∶0/22∶6 PC in the directed supply of 22∶6n−3 from maternal liver to the fetus. Concentrations of all PE species in maternal liver decreased at day 25 and day 35 of gestation. The gradual accumulation of 22∶6n−3 in fetal liver throughout gestation did not correlate with the pattern of acquisition of 22∶6n−3 into fetal brain PE. Maternal plasma PC and cholesterol concentrations decreased dramatically by day 25 of gestation, and remained low until term. This hypolipidemia of pregnancy in the guinea pig may be due to increased lipase-mediated turnover of plasma lipoproteins and contrasts strongly with the well-characterized hyperlipidemia in human and rat gestation.  相似文献   

17.
Phospholipids from livers of carps (Cyprinus carpio L.) adapted to winter (5°C) and summer (25°C) temperatures were isolated, and the fatty acid composition of total phospholipids, as well as molecular species composition of diacyl phosphatidylcholines and ethanolamines, were determined. Order parameter of 5-doxyl stearic acid and steady-state fluorescence anisotropy of different anthroyloxy fatty acids—[2-, 12(N-9-anthroyloxy)stearic acid and 16(N-9-anthroyloxy)palmitic acid—embedded in native and synthetic (16∶0/16∶0, 16∶0/22∶6, 18∶0/22∶6, 18∶1/22∶6, 20∶4/20∶4, 22∶6/22∶6 phosphatidylcholines and 16∶0/18∶1, 18∶1/22∶6 phosphatidylethanolamines) phospholipid vesicles was also determined between −30 and 30°C and 5 and 30°C, respectively. There is an accumulation of 1-monoenoic, 2-polyenoic diacyl phosphatidylcholine and ethanolamine with a concomitant reduction of 1-stearoyl,2-docosahexaenoyl species in the cold-adapted state. Despite a 30% accumulation of long-chain polyunsaturated fatty acids in phospholipids in cold, there is only a 5°C downshift in the solid-gel to liquid-crystalline phase transition temperature (−8 vs. −13°C). Vesicles from total phospholipids of cold-adapted fish proved to be more disordered in all segments than from the warmadapted ones when assayed using 2,12-(N-9-anthroyloxy)stearic and 16-(N-9-anthroyloxy)palmitic acid. Vesicles made from purified phosphatidylcholines showed the same pattern, but they were more disordered than the corresponding total phospholipids. This could be modelled using mixed phospholipid vesicles made of synthetic 16∶0/22∶6 phosphatidylcholine (75%) and either 18∶1/22∶6 phosphatidylethanolamine (25%) vs. 16∶0/18∶1 phosphatidylethanolamine (25%) and comparison of the anisotropy parameters of 100% 16∶0/22∶6 and 100% 18∶1/22∶6 phosphatidylcholine vesicles. Mixing either 16∶0/18∶1 (25%) or 18∶1/22∶6 (25%) phosphatidylethanolamines to 18∶0/22∶6 (75%) phosphatidylcholine shifted down or up, respectively, the transition temperature of vesicles compared to 100% 18∶0/22∶6 vesicles assayed by electron spin resonance spectroscopy using 5-doxylstearic acid. It is concluded that it is not the gross amount of long-chain polyunsaturated fatty acids in phospholipids, but rather their specific combination withcis Δ9 monounsaturated fatty acids in the positionsn-1, especially in phosphatidylethanolamines, that is important in determining the physical properties of biomembranes in relation to adaptational temperature.  相似文献   

18.
Muscle tissue from the common two-banded sea bream Diplodus vulgaris L. originating from the Adriatic Sea, Croatia, was analyzed. The FA composition of neutral (TAG) and polar (PE, PC, PI/PS) lipid classes was determined, as well as the lipid and water contents during winter and summer periods. Both the total lipid and water contents were higher in the winter period. We identified 16 different FA. The major constituents of the total FA in both seasons were saturates: palmitic (16∶0) and stearic acids (18∶0); monoenes: oleic (18∶1n−9) and palmitoleic acids (16∶1n−7); and polyunsaturates: arachidonic acid (20∶4n−6), EPA (20∶5n−3), and DHA (22∶6n−3), but their amounts and ratios differed significantly between the two seasons and between lipid fractions. The FA composition showed a noticeable pattern of seasonality that reflected fluctuations mainly in TAG. The diminution of the monounsaturated FA content in the summer was clearly followed by an increase in PUFA content. Diplodus vulgaris is a good source of natural n−3 PUFA and would therefore be suitable for inclusion in highly unsaturated low-fat diets.  相似文献   

19.
Fatty acid analyses were carried out on phosphoglycerides isolated from microsomal fractions of the rectal gland of the dogfish,Scyliorthinus canicula, and gills of the cod,Gadus morhua. Ratios of (n−3)/(n−6) polyunsaturated fatty acids were ca. 10 for phosphatidylcholine, (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) from cod gills, reflecting high concentrations of 20∶5 (n−3) and 22∶6(n−3). The ratio for phosphatidylinositol (PI) from cod gills was 1.3, reflecting high concentrations of 20∶4(n−6) as well as (n−3) polyunsaturates. PC, PE and PS from rectal glands all had much lower (n−3)/(n−6) ratios than in cod gills, reflecting higher concentrations of 20∶4(n−6), but the lowest ratio was again present in PI. The latter phospholipid had high concentrations of 18∶0 in both tissues. The relative constancy of the fatty acid composition of PI in the two salt-secreting tissues and its similarity to mammalian phospholipids is considered to reflect its specialized role in biomembranes.  相似文献   

20.
The molecular species composition was determined for phosphatidylcholine (PC) isolated from the marine dinoflagellateCrypthecodinium cohnii grown at three different temperatures. At all three temperatures the didocosahexaenoyl species comprised about 25% of the PC with 14∶0/22∶6 and 16∶0/22∶6 also being of major importance; these three species comprised 75–82% of the total. Another 20 species were identified, including several short chain disaturated species. Only small differences in the composition of PC were found in response to growth at 16, 23 and 27°C. On dropping the growth temperature from 27°C to 16°C the largest changes were a decrease of 8.9% in saturated/saturated species and an increase of 5.3% in saturated/PUFA species; the 22∶6/22∶6 content only increased slightly (by 1.9% to 25.4%). This unusual molecular species composition is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号