共查询到17条相似文献,搜索用时 62 毫秒
1.
基于260 t转炉炼钢实际生产数据,用RF(Random Forests,随机森林)、LGBM(Light Gradient Boosting Machine,轻量级梯度提升机)和Stacking集成三种不同机器学习算法建立了转炉炼钢终点磷锰预测模型。通过相关理论分析和皮尔逊相关系数法确定了模型输入变量,对比三种集成学习模型的终点命中率,表明Stacking集成模型的预测性能最好,在预测终点磷质量分数误差为±0.001%、±0.001 5%时的终点命中率分别为86.3%、97.1%,在预测终点锰质量分数误差为±0.008%、±0.01%时的命中率分别为83.4%、94.4%。 相似文献
2.
3.
转炉冶炼终点静态控制预测模型 总被引:4,自引:0,他引:4
基于天津天铁冶金集团30t转炉炼钢实际生产数据,首先建立了转炉炼钢终点静态控制的吹氧量及矿石用量统计模型,其预测100个炉次吹氧量和矿石用量平均相对误差分别为0.58%及10.4%。考虑到影响终点钢水温度和碳含量的因素比较复杂,设计了预测钢水终点温度和碳含量的人工神经网格模型,利用Levenberg-Marquardt算法和257个炉次的实际生产数据进行了模型训练,并对另外100个炉次的终点钢水温度及碳含量进行了预测,在终点钢水温度为1646-1698℃和终点碳质量分数为0.033%~0.128%的范围内,得到的终点碳温双命中率为55%。 相似文献
4.
5.
《工程科学学报》2019,(8):1052-1060
分析了影响转炉冶炼终点钢水中锰含量的因素,针对基于BP神经网络算法的转炉冶炼终点锰含量预测模型存在的收敛速度慢,预测精度低等问题,提出了一种基于极限学习机(ELM)算法建模的新思路,并引入正则化以及改进粒子群优化算法(IPSO),建立了基于改进粒子群算法优化的正则化极限学习机(IPSO-RELM)的转炉终点锰含量预测模型;应用国内某炼钢厂转炉实际生产数据对模型进行训练和验证,并与基于BP、ELM和RELM算法的三类模型进行比较.结果表明,采用IPSO-RELM方法构建的模型,锰含量预测误差在±0. 025%范围内的命中率达到94%,均方误差为2. 18×10~(-8),拟合优度R2为0. 72,上述三项指标均显著优于其他三类模型,此外,该模型还具有良好的泛化能力,对于转炉实际冶炼过程具有一定的指导意义. 相似文献
6.
分析了影响转炉冶炼终点钢水中锰含量的因素, 针对基于BP神经网络算法的转炉冶炼终点锰含量预测模型存在的收敛速度慢, 预测精度低等问题, 提出了一种基于极限学习机(ELM) 算法建模的新思路, 并引入正则化以及改进粒子群优化算法(IPSO), 建立了基于改进粒子群算法优化的正则化极限学习机(IPSO-RELM) 的转炉终点锰含量预测模型; 应用国内某炼钢厂转炉实际生产数据对模型进行训练和验证, 并与基于BP、ELM和RELM算法的三类模型进行比较.结果表明, 采用IPSO-RELM方法构建的模型, 锰含量预测误差在±0. 025%范围内的命中率达到94%, 均方误差为2. 18×10-8, 拟合优度R2为0. 72, 上述三项指标均显著优于其他三类模型, 此外, 该模型还具有良好的泛化能力, 对于转炉实际冶炼过程具有一定的指导意义. 相似文献
7.
应用改进的神经网络模型预报转炉冶炼终点 总被引:3,自引:0,他引:3
准确预报转炉冶炼终点的钢水温度与碳含量对提高转炉终点命中率具有重要意义。针对现有多层前馈网络学习算法的不足,基于BP模型提出一种改进算法,建立了复吹转炉冶炼终点的预报模型,并与BP模型的预测结果进行了统计比较。研究表明,改进后的模型能够对冶炼终点进行良好的预报。采用单节点输出模型对终点钢水碳含量与温度分别进行预报,预测误差w(Δ[C])<±0.03%的命中率达97.22%,Δt<±12℃的命中率为94.44%。还建立了神经网络双节点输出模型对转炉终点钢水碳含量及温度同时进行预报,误差Δt<±15℃、w(Δ[C])<0.03%的双命中率为76.92%。 相似文献
8.
9.
目前广泛采用的RBF神经网络具有训练时间长与训练困难等缺陷.本研究结合实际生产数据,建立了FOA-GRNN神经网络预报模型,并对转炉终点温度与碳质量分数进行预报.结果表明:与RBF神经网络相比,FOA-GRNN神经网络可以有效提高命中率并满足实际生产要求.当碳质量分数绝对误差小于±0. 03%时,FOA-GRNN神经网络预报命中率可由91%提高至94%;当温度绝对误差小于±15℃时,预报命中率可由89%提高至97%.同时,FOA-GRNN神经网络训练时间在RBF神经网络基础上分别降低了42. 22%与37. 08%,预报结果与实测值的均方差也有一定的降低,故可为现场生产提供重要的参考. 相似文献
10.
基于副枪控制的转炉终点预测模型 总被引:1,自引:0,他引:1
利用转炉吹炼末期脱碳指数方程、热平衡和热力学方程分别建立了转炉终点碳、温度、磷和锰的预报模型.终点碳质量分数预报误差为±0.015%的命中率达到87.6%;转炉终点目标w(C)=0.03%时,温度误差范围±10 ℃的比率为85.4%;模型预报钢中w(Mn)误差在±0.02%、w(P) 误差在±0.003%范围的比率分别达到了87.0%和81.2%.建立的预报模型具有较高的精度,实现了转炉终点碳、温度、残锰和磷的同时预报,为提高转炉的终点控制命中率、减少补吹的次数、实现直接出钢打下良好的基础. 相似文献
11.
12.
13.
针对LF冶炼终点温度影响因素的复杂性,提出以自组织数据挖掘原理为核心的GMDH神经网络对钢水终点温度进行预测,±5℃内误差的命中率为78.31%,±7.5℃内误差的命中率为92.77%;建立物料的热效应模型,通过不同物料加入钢水中的热效应计算,将LF精炼过程中加入的物料折算为一个输入因素,改进的GMDH神经网络对钢水温度预测,±5℃内误差的命中率为88.72%,±7.5℃内误差的命中率为98.44%,基于物料模型的GMDH神经网络不仅在命中率上有显著提高,而且对冶炼多钢种导致的物料结构改变有更好的适应能力. 相似文献
14.
15.
16.
转炉炼钢是一个复杂的高温物理化学反应过程。在冶炼过程中不能连续检测钢的成分。所以,准确地预报终点的碳质量分数和温度对于提高终点命中率是非常有意义的。基于广西某钢厂80 t转炉炼钢实际生产数据,建立了终点碳质量分数和终点温度的孪生支持向量回归机(TSVR)预测模型,对100个炉次的实际生产数据进行了模型的训练,另外30个炉次的数据用于验证模型的精度。结果表明,预测误差Δω([C])≤ 0.01%的命中率为93.3%,Δt≤15 ℃的命中率为96.7%,双命中率为90%。与BP神经网络模型相比,TSVR模型的终点碳质量分数和终点温度命中率均比BP神经网络模型高。 相似文献
17.
为了提高转炉炼钢的终点命中率,建立了一种新的转炉终点预测模型,实现了对转炉终点碳质量分数和温度的准确预测。模型采用K最近邻孪生支持向量机(KNNWTSVR)算法,将权重矩阵引入到目标函数中,并利用鲸群优化算法进行求解,提高了传统算法的性能;然后基于某炼钢厂260 t转炉的实际生产数据,建立了转炉炼钢终点预测模型。结果表明,预测模型的终点碳质量分数(误差±0.005%)和温度(误差±15 ℃)的终点单命中率分别为94%和88%,双命中率达到84%。与其他两种现有的建模方法相比,本模型取得了最优的预测效果。该方法满足转炉炼钢实际生产的需求,也可适用于钢铁冶金其他领域的数学建模。 相似文献