首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous mass versus time data for single coal particles from 5.3 to 9.9 mm with gas temperatures of 900–1200K, Reynolds numbers of 63–126, and oxygen concentrations of 4.5–21 % are presented. Devolatilization and char burn models for millimeter sized particles are formulated and compared with the experimental results. The devolatilization rate is most sensitive to particle size and gas temperature. The char reactivity depends on initial size, Reynolds number, and oxygen concentration. The devolatilization rate agrees with the model of Anthony and Howard when volatile yields are provided from experimental data. The char burning rate follows a diffusion controlled shrinking sphere model when a diffusion screening factor is included.  相似文献   

2.
A model of the ignition of a polydisperse cloud of brown coal particles, in a known gas environment, is presented and used to predict the behavior of the particles in a burner jet of a utility boiler. The model allows for drying, devolatilization, and char combustion of the particles. It is assumed that the volatiles burn in the free stream so that char combustion can occur during volatiles evolution, the diffusion of oxygen to the particle surface being inhibited due to the net outflow of volatiles. The model is used to calculate the behavior of a cloud of p.f. size particles along the centerline of a brown coal burner jet in which the gas temperature and composition have been measured. Rates of volatile release and char combustion are calculated and shown to be in agreement with measurements of volatile material in the flame. It is found that particles smaller than about 80 μm contribute most to the ignition of the jet and that they closely follow the local gas temperature. The unique character of brown coal of combustion, its high volatile evolution on rapid heating, the high activity of its char at low temperature, and the demonstrated ignition of its char without a jump in temperature make the overlap of devolatilization and char combustion more likely than with other coals. The mathematical formulation that allows this overlap gives oxygen consumption levels consistent with measurement. An analysis is made of the relative importance of radiation from the flame front to the particle, and entrainment of hot combustion gases into the jet. It is found that the radiation is of secondary importance compared to the effect of entrainment which is the controlling mechanism in the initial heating of the particles. Also, the significance of the assumption that the volatiles burn in the free stream is discussed.  相似文献   

3.
For oxy-combustion with flue gas recirculation, elevated levels of CO2 and steam affect the heat capacity of the gas, radiant transport, and other gas transport properties. A topic of widespread speculation has concerned the effect of gasification reactions of coal char on the char burning rate. To asses the impact of these reactions on the oxy-fuel combustion of pulverized coal char, we computed the char consumption characteristics for a range of CO2 and H2O reaction rate coefficients for a 100 μm coal char particle reacting in environments of varying O2, H2O, and CO2 concentrations using the kinetics code SKIPPY (Surface Kinetics in Porous Particles). Results indicate that gasification reactions reduce the char particle temperature significantly (because of the reaction endothermicity) and thereby reduce the rate of char oxidation and the radiant emission from burning char particles. However, the overall effect of the combined steam and CO2 gasification reactions is to increase the carbon consumption rate by approximately 10% in typical oxy-fuel combustion environments. The gasification reactions have a greater influence on char combustion in oxygen-enriched environments, due to the higher char combustion temperature under these conditions. In addition, the gasification reactions have increasing influence as the gas temperature increases (for a given O2 concentration) and as the particle size increases. Gasification reactions account for roughly 20% of the carbon consumption in low oxygen conditions, and for about 30% under oxygen-enriched conditions. An increase in the carbon consumption rate and a decrease in particle temperature are also evident under conventional air-blown combustion conditions when the gasification reactions are included in the model.  相似文献   

4.
基于多孔介质非热平衡的方法,考虑了床层高度的变化及颗粒内部温度梯度的影响,建立了一维非稳态燃烧模型来模拟炉排上移动床层的生物质燃烧。模拟计算结果与实验值对比分析表明,总体上数值计算结果与实验数据吻合较好。通过对不同一次风参数下床层燃烧的模拟结果分析得到,随着一次风风量的增加,床层剩余质量先减小后增大;在燃烧前期,床层出口气体温度上升速度减慢,挥发分析出速率降低,焦炭燃烧速率增大;在燃烧中期,床层出口气体温度先上升后下降,焦炭燃烧速率下降。一次风风温相比于一次风风量对床层燃烧影响较小,增大一次风风温可以提高挥发分析出速率,降低床层出口气体温度和床层剩余质量。  相似文献   

5.
A model for the release of sodium during the combustion of single Loy Yang brown coal char particles is presented. The model is combined with further analysis of recently published measurements of the release of sodium from single brown coal particles burning in a flat flame to estimate the rate constant for sodium release as a function of burnout time for these experiments. A char combustion and heat transfer model is also used to predict the char burnout behaviour and surface temperature of the particle as a function of time during combustion for each of the experiments. By combining the predicted time–temperature history of the particles with the estimated rate constant for sodium release, an Arrhenius expression for the release of sodium during char combustion is determined as:A full mechanism for sodium release during the various stages of coal combustion is also proposed. Utilising the proposed mechanism, the rate-determining step for sodium release during char combustion is proposed to be the formation of a reduced form of sodium in the char which subsequently leads to the rapid loss of sodium from the particle.  相似文献   

6.
Though the two-phase theory of fluidization is well-accepted, no direct experimental measurements of the different gas concentrations predicted to occur in bubble and particulate phases could be found in the literature. For the first time, theoretical predictions of these different gas concentrations have been validated experimentally, using a combined oxygen/bubble probe. Based on the two-phase theory, a mathematical model was developed for the combustion of a batch of char particles in a fluidized-bed combustor. The experimental oxygen concentration in the particulate phase as a function of time was well predicted by the model. Slight discrepancies for the bubble phase values were eliminated when low-oxygen-concentration bubbles were excluded from the data, attributed to some char combustion occurring in bubbles being contrary to the model assumption. The temperature difference between char and bed particles (ΔT) was the only adjustable parameter in the model. A value of 20°C fitted the burnoff times measured by visual observation of the top of the bed, for both 5 and 10 g char batch masses. Model predictions of the oxygen concentrations were not sensitive to ΔT during the first half of burnoff, when mass transfer controlled the combustion rate, so the mass transfer processes were predicted correctly by the model effectively with no adjustable parameter. The ΔT value of 20°C was significantly lower than experimental measurements of maximum burning char particle temperatures, reported to be 70°C for the small-diameter bed particles used in this work. The discrepancy was attributed to two factors: (i) the decrease in char particle temperature towards the end of the burnoff, when kinetics significantly affected the combustion rate; and (ii) a lower char particle temperature in the particulate phase than in the bubble phase, with experimental char particle temperature measurements biased towards the higher bubble phase values. It was inferred: (i) that the maximum values of ΔT measured experimentally are too high for calculation of the char particle combustion rate during the kinetic-controlled latter stage of burnoff and (ii) that reported values of the heat transfer coefficient from burning char particles to the particulate phase deduced from these particle temperature measurements may have been underestimated.  相似文献   

7.
The release of volatile sodium during coal combustion is a significant factor in the fouling and corrosion of heat transfer surfaces within industrial coal-fired boilers. A method for measuring the temporal release of atomic sodium from a single coal particle is described. Laser absorption was used to calibrate laser-induced fluorescence measurements of atomic sodium utilising the sodium D1 line (589.59 nm) in a purpose-designed flat flame environment. The calibration was then applied to planar laser-induced fluorescence measurements of sodium atoms in the plume from a single Victorian brown coal particle (53 mg) suspended within the flat flame. The peak concentration of atomic sodium was approximately 64.1 ppb after 1080.5 s, which appears to correspond to the end of char combustion. To our knowledge this is the first in situ quantitative measurement of the concentration field of atomic sodium in the plume above a burning particle. A simple kinetic model has been used to estimate the rate of sodium decay in the post-flame gases. Comparison of the estimated and measured decay rates showed reasonable agreement.  相似文献   

8.
Comparative combustion studies were performed on particles of pulverized coal samples from three different ranks: a high-volatile bituminous coal, a sub-bituminous coal, and two lignite coals. The study was augmented to include observations on burning pulverized woody biomass residues, in the form of sugarcane bagasse. Fuel particles, in the range of 75–90 μm, were injected in a bench-scale, transparent drop-tube furnace, electrically-heated to 1400 K, where they experienced high-heating rates, ignited and burned. The combustion of individual particles in air was observed with three-color pyrometry and high-speed high-resolution cinematography to obtain temperature–time–size histories. Based on combined observations from these techniques, in conjunction to morphological examinations of particles, a comprehensive understanding of the combustion behaviors of these fuels was developed. Observed differences among the coals have been striking. Upon pyrolysis, the bituminous coal chars experienced the phenomena of softening, melting, swelling and formation of large blowholes through which volatile matter escaped. Combustion of the volatile matter was sooty and very luminous with large co-tails forming in the wake of the particle trajectories. Only after the volatile matter flames extinguished, the char combustion commenced and was also very luminous. In contrast, upon pyrolysis, lignite coals became fragile and experienced extensive fragmentation, immediately followed by ignition of the char fragments (numbering in the order of 10–100, depending on the origin of the lignite coal) spread apart into a relatively large volume. As no separate volatile matter combustion period was evident, it is likely that volatiles burned on the surface of the chars. The combustion of the sub-bituminous coal was also different. Most particles experienced limited fragmentation, upon pyrolysis, to several char fragments, with or without the presence of brief and low-luminosity volatile flames; other particles did not fragment and directly proceeded to char combustion. Finally combustion of bagasse was once again very distinctive. Upon pyrolysis, long-lasting, low-luminosity, nearly-transparent spherical flames formed around slowly-settling devolatilizing particles. They were followed by bright, short-lived combustion of the chars. Both volatiles and chars experienced shrinking core mode of burning. For all fuels, flame and char temperature profiles were deduced from pyrometric data and burnout times were measured. Combustion rates were calculated from luminous carbon disappearance measurements, and were compared with predictions based on published kinetic expressions.  相似文献   

9.
The nature of mineral matter in coal determines its transformation into ash during combustion and the nature of resulting ash (e.g. chemical composition and particle size distribution), and subsequently influences the ash deposition behaviour. The behaviour of mineral matter is primarily influenced by two parameters: the mineral grain size, and whether the mineral grains are within the coal matrix or not. Computer-controlled scanning electron microscopy (CCSEM) of coal provides such information on mineral matter in coal. CCSEM data are, therefore, processed to predict the fouling and slagging characteristics of several coals. The fraction of basic oxides in each mineral grain may be considered as an indicator of stickiness of the corresponding ash particle due to formation of low melting compounds. The cumulative mass fraction of mineral grains with certain basic oxides or viscosity of resulting ash particles from included and excluded minerals are proposed as alternative indices for ash deposition.

The excluded mineral matter is in equilibrium with the combustion flue gases at the gas temperatures, whereas the included minerals are in equilibrium with the atmosphere within char at the burning char particle temperature. It is predicted from thermodynamic calculations based on this understanding that almost all the evaporation is either from the included mineral matter or from the atomically dispersed minerals in coal. This is due to the high temperature and reducing atmosphere inside the char particle. The release of the evaporated species is controlled by diffusion through the burning char particle and, therefore, may be estimated theoretically. The amount of mineral matter that is vaporized may then be related to fouling, whereas the melt phase present on the surface of large ash particles may be related to slagging. The theoretical speculations on the physical character of ash derived from these indices are compared with the experimental data obtained from combustion of coals in a drop-tube furnace.  相似文献   


10.
A model that predicts the physical changes that pulverized coal char particles undergo during combustion has been developed. In the model, a burning particle is divided into a number of concentric annular volume elements. The mass loss rate, specific surface area, and apparent density in each volume element depend upon the local particle conditions, which vary as a consequence of the adsorbed oxygen and gas-phase oxygen concentration gradients inside the particle. The model predicts the particle's burning rate, temperature, diameter, apparent density, and specific surface area as combustion proceeds, given ambient conditions and initial char properties. A six-step heterogeneous reaction mechanism is used to describe carbon reactivity to oxygen. A distributed activation energy approach is used to account for the variation in desorption energies of adsorbed O-atoms on the carbonaceous surface. Model calculations support the three burning zones established for the oxidation of pulverized coal chars. The model indicates two types of zone II behavior, however. Under weak zone II burning conditions, constant-diameter burning occurs up to 30% to 50% conversion before burning commences with reductions in both size and apparent density. Under strong zone II conditions, particles burn with reductions in both size and apparent density after an initial short period (<2% conversion) of constant-diameter burning. Model predictions reveal that early in the oxidation process, there is mass loss at constant diameter under all zone II burning conditions. Such weak and strong burning behavior cannot be predicted with the commonly used power-law model for the mode of burning employing a single value for the burning mode parameter. Model calculations also reveal how specific surface area evolves when oxidation occurs in the zone II burning regime. Based on the calculated results, a surface area submodel that accounts for the effects of pore growth and coalescence during combustion under zone I conditions was modified to permit the characterization of the variations in specific surface area that occur during char conversion under zones II conditions. The modified surface area model is applicable to all burning regimes. Calculations also indicate that the particle's effectiveness factor varies during conversion under zone II burning conditions. With the adsorption/desorption mechanism employed, a near first-order Thiele modulus-effectiveness factor relationship is obeyed over the particle's lifetime.  相似文献   

11.
Oxygen-enhanced and oxygen-fired pulverized coal combustion is actively being investigated to achieve emission reductions and reductions in flue gas cleanup costs, as well as for coal-bed methane and enhanced oil recovery applications. To fully understand the results of pilot scale tests and to accurately predict scale-up performance through CFD modeling, accurate rate expressions are needed to describe coal char combustion under these unconventional combustion conditions. In the work reported here, the combustion rates of two pulverized coal chars have been measured in both conventional and oxygen-enriched atmospheres. A combustion-driven entrained flow reactor equipped with an optical particle-sizing pyrometry diagnostic and a rapid-quench sampling probe has been used for this investigation. Highvale subbituminous coal and a high-volatile eastern United States bituminous coal have been investigated, over oxygen concentrations ranging from 6 to 36 mol% and gas temperatures of 1320-1800 K. The results from these experiments demonstrate that pulverized coal char particles burn under increasing kinetic control in elevated oxygen environments, despite their higher burning rates in these environments. Empirical fits to the data have been successfully performed over the entire range of oxygen concentrations using a single-film oxidation model. Both a simple nth-order Arrhenius expression and an nth-order Langmuir-Hinshelwood kinetic equation provide good fits to the data. Local fits of the nth-order Arrhenius expression to the oxygen-enriched and oxygen-depleted data produce lower residuals in comparison to fits of the entire dataset. These fits demonstrate that the apparent reaction order varies from 0.1 under near-diffusion-limit oxygen-depleted conditions to 0.5 under oxygen-enriched conditions. Burnout predictions show good agreement with measurements. Predicted char particle temperatures tend to be low for combustion in oxygen-depleted environments.  相似文献   

12.
建立了球坐标系下传热、传质、化学反应全耦合的煤粉燃烧数值模拟程序.通过煤粉与事先脱除挥发分的焦炭的对比实验及数值模拟,研究了挥发分火焰对碳粒表面一次产物CO火焰的点燃及碳粒燃烧的影响.傅里叶变换红外光谱仪(FTIR)测温实验及煤粉燃烧动态过程的数值模拟结果不仅进一步验证了碳粒着火初期CO火焰所引起的颗粒高温现象,而且给出了挥发分引燃表面反应一次产物CO的直接证据.由于挥发分火焰的引燃作用,碳粒可以在较其非均相着火温度为低的温度下被点燃,阐明了Juntgen提出的联合着火方式的物理本质.  相似文献   

13.
炉内煤粉燃烧一维数学模型及其仿真   总被引:4,自引:0,他引:4       下载免费PDF全文
为了准确计算炉内煤粉的燃尽率,从研究煤粉粒子的燃烧机理入手,以炉膛内最复杂的燃烧器区域的煤粉燃烧过程为研究对象,通过合理简化煤粉中挥发分和焦炭的燃烧过程,建立了炉内煤粉燃烧沿高度方向上的一维宏观模型,在模型中考虑了煤粉燃烧过程中氧含量的变化,以单个煤粉颗粒燃烧的等密度模型为基础,通过多种煤粉粒径的燃烧过程反映煤粉燃烧的整体过程,推导出计算炉内煤粉燃尽率的显示公式,满足了实时仿真计算的要求。计算结果与实测数据和现有的文献相符,并对结果进行了分析。  相似文献   

14.
15.
The combustion behavior of single fuel particles was assessed in O2/N2 and O2/CO2 background gases, with oxygen mole fractions in the range of 20–100%. Fuels included four pulverized coals from different ranks (a high-volatile bituminous, a sub-bituminous and two lignites) as well as pulverized sugarcane-bagasse, a biomass residue. Particles of 75–90 μm were injected under laminar flow in a bench-scale, transparent drop-tube furnace (DTF), electrically-heated to 1400 K where, upon experiencing high heating rates, they ignited and burned. The combustion of individual particles was observed with three-color optical pyrometry and high-speed high-resolution cinematography to obtain temperature and burnout time histories. Based on combined observations from these techniques, a comprehensive understanding of the behaviors of these fuels was developed under a variety of conditions, including simulated oxy-fuel combustion. The fuels exhibited distinct combustion behaviors. In air, the bituminous coal particles burned in two distinctive modes; the volatiles burned in bright envelope flames surrounding the devolatilizing char particles followed by heterogeneous char combustion. The volatile matter of sub-bituminous coal particles burned either in subdued envelope flames, surrounding devolatilizing and occasionally fragmenting chars, or heterogeneously at the char surface. Lignite particles typically burned with extensive fragmentation, and their volatiles burned simultaneously with the char fragments. The volatiles of bagasse particles burned in spherical and transparent envelope flames. Increasing the oxygen mole fraction in N2, increased flame and char surface temperatures, and decreased burnout times; particles of all fuels burned more intensely with an increasing tendency of the volatiles to burn closer to the char surface. When the background gas N2 was substituted with CO2, the combustion of all fuels was distinctly less intense; at moderate O2 mole fractions (<30%) most particles did not ignite under active flow conditions in the furnace (they did ignite under quiescent gas flow conditions in the DTF). Increasing the oxygen mole fraction in CO2 increased the likelihood of combustion and its intensity. Combustion of volatiles in envelope flames was suppressed in the presence of CO2, particularly under active gas flow in the DTF.  相似文献   

16.
不同反应气氛下燃料氮的析出规律   总被引:1,自引:0,他引:1  
在自行设计的试验装置上研究了黄台煤(HT)、莱城煤(LC)在不同气氛下氮的析出特性.结果表明:在混有CO的还原性气氛中,NOx析出时间延迟,挥发分氮析出与焦碳氮析出时间有融合的趋势,NOx生成量减少;在高氧浓度混有CO2的气氛中,氮析出时间提前,且在燃烧前期聚集释放,析出量大;在低氧浓度下,挥发分氮与焦碳氮分阶段析出,NOx生成量减少.  相似文献   

17.
Group combustion of char/carbon particles   总被引:3,自引:0,他引:3  
Extensive literature exists for the experimental data on coal/char ignition and combustion. While most of the experiments are performed with a cloud or stream of particles, the theoretical modeling used to compare and interpret the experimental data is based on the individual particle combustion (IPC) model. As opposed to individual particle modeling, a group combustion (GC) theory is proposed for the combustion modeling of char/carbon particles. For a cloud of liquid drops, the group behavior implies the formation of a flame (group flame) around a large number of drops rather than a flame around each drop. More generally, the group behavior for a cloud of particles represents the change in the burning characteristics due to collective behavior of particles with or without a group flame. To gain a basic understanding of the group behavior, a model such as the analysis of a spherically symmetric cloud of particles burning in quiescent air is presented here. Each particle within the cloud produces CO, due to both the oxidation of C to CO and the reduction of CO2 to CO which subsequently oxidizes to CO2 in the homogeneous gas phase.

Generalized results for the burning rate and the flame structure are given as a function of group combustion number (G). Predicted results show unexpected results including the independence of the burning rate of CO kinetics. Quantitative results for both the cases of frozen and fast CO kinetics are given. There is a group flame for the case of fast CO kinetics. It is shown that the group flame occurs at G > 5 while for a cloud of liquid drops, the group flame occurs at G > 0.1. The higher critical group combustion number is attributed to the lower burning rate of particle inside the cloud compared to the burning rate of liquid drops inside the cloud. The results show that there exists mainly three modes of combustion: (i) Individual Particle Combustion (IPC, low G), (ii) Group Combustion (GC, intermediate G) and (iii) Sheath Combustion (SC, high G). Criteria are given for identifying the mode of combustion from the experimental conditions. The criteria and the establishment of modes of combustion are independent of the extent of CO kinetics. It is found that the experimental data, obtained with a stream of particles and commonly interpreted with the IPC model, indicate the combustion modes to vary from IPC to SC modes. These data are now reinterpreted with the group theory.  相似文献   


18.
For accurate modeling of the coal combustion process at elevated pressures, account must be made for variations in char-particle structure. As pressure is increased, particle swelling increases during the devolatilization of certain bituminous coals, yielding a variety of char-particle structures, from uniform high-density particles to thin-walled non-uniform low-density particles having large internal void volumes. Since under Zone II burning conditions the char conversion rate depends upon the accessibility of the internal surfaces, the char structure plays a key role in determining particle burnout times. In our approach to characterize the impact of char structure on particle burning rates, effectiveness factors appropriate for thin-walled cenospherical particles and thick-walled particles having a few large cavities are defined and related to the effectiveness factor for uniform high-density particles that have no large voids, only a random distribution of pores having a mean pore size in the sub-micron range. For the uniform case, the Thiele modulus approach is used to account for Zone II type burning in which internal burning is limited by the combined effects of pore diffusion and the intrinsic chemical reactivity of the carbonaceous material. In the paper, the impact of having a variety of char structures in a mix of particles burning under Zone II burning conditions is demonstrated.  相似文献   

19.
Fluidized bed combustion has attracted much interest in recent years, but there is very little data on the behavior of coal particles at these new conditions. Coal of much larger diameter (1–10 mm), much lower furnace temperatures (~850 °C), and different fluid mechanical conditions exist compared to pulverized coal furnaces. This paper presents experimental data on the behavior and combustion rates of individual coal particles aerodynamically suspended in a heated jet, to stimulate flow conditions in a fluidized bed.Tests of bituminous, sub-bituminous and lignite coals from 2 to 12 mm at jet temperatures of 705 and 816 °C in air and air diluted with equal parts of nitrogen were conducted. The ignition delay time varied from 2 to 44 sec. The devolatilization time extended up to 80 sec and was dependent mainly on particle size. The total burn time was independent of coal type and temperature, and varied as the square of the size and inversally with the oxygen concentration. The total turn time varied from 25 to 740 sec independently of coal type. The square law for the char burning rate was investigated.  相似文献   

20.
层燃炉燃煤特性和煤粉炉燃煤特性差异很大,为了了解过量空气系数对层燃炉NOx析出特性的影响,在层燃单元体炉上进行了不同过量空气系数下煤层表面NOx析出特性的对比实验。发现增大过量空气系数可强化燃烧,加快火焰锋面传递,提高燃烧温度;在挥发分析出阶段促进挥发分析出,增强还原性气氛,抑制NOx生成;在焦炭燃烧阶段提高氧浓度,促进NOx生成,降低了焦炭对NOx还原效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号