首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The essay deals with the lack of a suitable permanent storage site for the radioactive waste that has been produced by more than 103 open-cycle nuclear reactors in the U.S. The DOE has recently withdrawn the licensing application for the Yucca Mountain Repository leaving the nuclear industry responsible for the safety of more than 800 waste-containing concrete casks currently on the open surface at 34 sites. It also has not undertaken measures to reduce the volume of additional waste produced by both existing and newly planned reactors. The DOE has instead opted to undertake research to develop new cycles that "burn" the radioactive waste. This policy appears subordinated to obvious political pressures. It is short sighted in terms of a practical program to serve the interests of the clean and safe energy requirements of the country. The essay also describes technical initiatives and processes that are recommended for a better solution.  相似文献   

2.
In this paper we shed some light on the safety of unsaturated zone nuclear geological repositories in the long run by examining the effect of physical and chemical processes that take place inside a partially failed nuclear waste container. Our analysis addresses the safety of the proposed nuclear repository at Yucca Mountain, which is intended to store high-level nuclear waste. Our study is independent of the US Department of Energy (DOE) analysis, which involves a number of complex computer codes and assumptions, and relies on the performance of an engineered barrier system. Our safety analysis could be applied in general to any geological repository designed to be in an unsaturated zone, since it is based on the geology, unsaturated zone location, and a key characteristic of the waste, heat production. This analysis shows that the radionuclide release from a partially failed waste container, stored in an unsaturated zone geological repository, is likely to be gradual and long delayed.  相似文献   

3.
The transient cooling of a fluid initially at rest inside a vertical cylinder submitted to heat losses through the walls is studied. The study is restricted to laminar flow conditions. In order to identify the relevant non-dimensional groups that define the unsteady natural convection phenomenon that occurs, a non-dimensional analysis is carried out. The long-term behaviour of the fluid is modelled by formulating a prediction model based on global balances. A parametric study by means of several multidimensional numerical simulations led to correlate the Nusselt number and the transient mean fluid temperature, in order to feed the global model proposed. Special attention is given to the appropriateness of the spatial and time discretisation adopted, the verification of the numerical solutions and the post-processing tasks carried out in order to obtain the correlations. The most relevant particularities of the numerical model developed are also pointed out.  相似文献   

4.
The short communication addresses forced convection heat transfer of a viscous fluid flowing in a tube with fully developed laminar velocity and uniform entrance temperature that exchanges heat convection with a surrounding fluid. The idea is to implement the lumped model following the footsteps of the potent lumped model within unsteady heat conduction, instead of the differential model. The computed mean bulk temperatures of the viscous fluid expressed by a simple exponential function agrees well with the baseline numerical mean bulk temperatures when the internal fluid is air, water or crude oil and the external fluid is air for small values of the modified Biot numbers and maximum Reynolds numbers are satisfied.  相似文献   

5.
This work presents a hybrid numerical–analytical solution for transient laminar forced convection over flat plates of non-negligible thickness, subjected to arbitrary time variations of applied wall heat flux at the fluid–solid interface. This conjugated conduction–convection problem is first reformulated through the employment of the coupled integral equations approach (CIEA) to simplify the heat conduction problem on the plate by averaging the related energy equation in the transversal direction. As a result, an improved lumped partial differential formulation for the transversally averaged wall temperature is obtained, while a third kind boundary condition is achieved for the fluid from the heat balance at the solid–fluid interface. From the available steady velocity distributions, a hybrid numerical–analytical solution based on the generalized integral transform technique (GITT), under its partial transformation mode, is then proposed, combined with the method of lines implemented in the Mathematica 5.2 routine NDSolve. The interface heat flux partitions and heat transfer coefficients are readily determined from the wall temperature distributions, as well as the temperature values at any desired point within the fluid. A few test cases for different materials and wall thicknesses are defined to allow for a physical interpretation of the wall participation effect in contrast with the simplified model without conjugation.  相似文献   

6.
ABSTRACT

In this study, numerical calculations using single- and two-phase models of CuO/water nanofluid forced convection in a three-dimensional C-shaped channel with constant heat flux are investigated. The laminar heat transfer enhancement using a nanofluid in a chaotic flow is first validated with the available data in the literature and the maximum discrepancy is within 3%; then further it is extended to design the C-shaped geometry. In addition, after comparisons of the numerical results with single- and two-phase models, the multiparameter constrained the optimization procedure integrating the design of experiments (DOE), response surface methodology (RSM), genetic algorithm (GA), and computational fluid dynamics (CFD) is proposed to design the nanofluid laminar convection of three-dimensional C-shaped channels. The thermal performance factors predicted by the regression function for the C-shaped channel case are in good agreement with the numerical results of CFD, with the difference being within 10%.  相似文献   

7.
ABSTRACT

The results of a numerical study of the problem of multimode heat transfer from a square-shaped electronic device provided with three identical flush-mounted discrete heat sources are presented here. Air, a radiatively nonparticipating fluid, is taken to be the cooling medium. The heat generated in the discrete heat sources is first conducted through the device, before ultimately being dissipated by convection and surface radiation. The governing partial differential equations for temperature distribution are converted into algebraic form using a finite-volume based finite difference method, and the resulting algebraic equations are subsequently solved using Gauss-Seidel iterative procedure. A grid size of 151 × 91 is used for discretizing the computational domain. The effects of all relevant parameters, including volumetric heat generation, thermal conductivity, convection heat transfer coefficient, and surface emissivity, on various important results, such as the local temperature distribution, the peak temperature of the device, and the relative contributions of convection and surface radiation to heat dissipation from the device, are studied in sufficient detail. The exclusive effect of surface radiation on pertinent results of the present problem is also brought out.  相似文献   

8.
Fluid‐to‐fluid scaling for supercritical heat transfer can effectively reduce the difficulty and cost of heat transfer experiments in supercritical boilers and supercritical water reactors and can reduce the number of experiments by converting experimental data of the model fluid to the prototype fluid in organic Rankine cycles. Currently, most existing scaling methods are only suitable for forced convection, while few are developed for mixed convection where buoyancy significantly affects the heat transfer. This paper attempts to extend the applicability of scaling method to mixed convection with the aid of computational fluid dynamic simulations. The scaling parameters were analyzed first and then the shear‐stress transport k‐ω model was used to analyze the supercritical heat transfer characteristics of water and R134a to provide further information for developing a dimensionless number. The results show that significant variations of properties and flow parameters occur in the layer of y+ = 5 to 100 and the axial velocity gradient in this layer changes in quite a similar manner to the wall temperature. Based on numerical results, the axial velocity gradient was used with a thermal resistance analogy to derive a new dimensionless number, Re?0.9πA , to scale the mass flux. Then, a set of fluid‐to‐fluid scaling laws were developed to predict the heat transfer to supercritical fluids. To validate the newly proposed scaling laws, well‐developed correlations were used for forced convection flow and a direct validation method was developed for buoyancy‐influenced flow. Results show that this new scaling method exhibits reasonable accuracy for both forced and mixed convection heat transfer with supercritical fluids.  相似文献   

9.

The numerical and experimental study of heat transfer characteristics in an enhanced channel with turbulent flow is presented. Numerical computations have been done for a periodic element of the channel with periodically fully developed flow using a commercial finite element code. The main objective of this study was to use computational fluid dynamics to obtain convection heat transfer coefficients with air as the fluid. Numerical predictions were compared with experimental results, and a reasonably good agreement was found between the two. It is shown that the channel investigated in this study improves the convection heat transfer coefficient. For high Reynolds number flow conditions, Nusselt numbers in this channel exceeded those in the parallel plate channel by approximately 220%.  相似文献   

10.
为有效利用飞机辅助动力装置(Auxitlary Power Unit , APU)排气余热,基于有机朗肯循环(Organic Rankine Cycle, ORC)发电系统,构建了APU余热回收系统。系统以APU排气余热为输入,驱动ORC做功,输出电能,为机载设备提供二次能源。结合工程热力学原理,建立系统热力学模型,并通过Matlab编程对余热回收系统进行了仿真计算及性能分析。仿真结果表明,系统功率及效率随飞行马赫数增加而降低;APU余热回收系统在飞机低音速飞行时有良好的性能;马赫数小于1时,系统功率在12 kW以上,效率在11%以上,耗气率低于0.0262 kg/kJ。  相似文献   

11.
Kinetics of solidification of phase change materials (PCM) was analyzed for combined heat conduction in the PCM and container wall, and convection in the cold fluid. Stable and convergent numerical methods were derived after transformation to normalized size scale, and corresponding immobilization of the moving boundary. The accuracy was confirmed by comparing numerical solutions and corresponding analytical solutions for control by heat conduction in solidifying layers. The proposed method was used to assess when solidification is controlled solely by conduction in solidified layer, and to analyze relative roles of conduction through the container and convection in the cold fluid.  相似文献   

12.
In structural designs considering thermal loading, in addition to heat conduction within the structure, the heat convection upon the structure’s surface can significantly influence optimal design configurations. In this paper, we focus on the influence of design-dependent effects upon heat convection and internal heat generation for optimal designs developed using a topology optimization scheme. The method for extracting the structural boundaries for heat convection loads is constructed using a Hat function, and heat convection shape dependencies are taken into account in the heat transfer coefficient using a surrogate model. Several numerical examples are presented to confirm the usefulness of the proposed method.  相似文献   

13.
A numerical model was developed in order to predict the heat transfer process and pressure drop in a vertical helical coil heat exchanger (HCHE) located inside a fluid storage tank in which water is used as inner and outer fluid. Natural convection was considered as boundary condition for the HCHE outer surface. The model was validated with experimental data obtained from an own facility with two HCHEs tested under several operating conditions. The model developed was used to evaluate the main HCHE representative geometrical parameter's influence on the overall heat transfer coefficient and pressure drop. The results show that by increasing the tube diameter causes an increase of the Nusselt number and a larger heat transfer rate to pressure drop ratio is obtained.  相似文献   

14.
《Applied Thermal Engineering》2007,27(5-6):918-926
A numerical study of steady state flow and heat transfer has been conducted for the multiple plate porous insulation used in the reactor pressure vessels of ‘Magnox’ nuclear power stations. The insulation pack studied, consisting of seven dimpled stainless steel sheets and six plane stainless steel sheets, was of the type installed in the Sizewell A plant. In the reactor application the fluid within the insulation pack is carbon dioxide at 20 bar but in the numerical investigation the insulation performance was examined in air at lower pressures. A three-dimensional computation model with a periodicity condition was used in the numerical investigation. Result was obtained for laminar forced convection with constant wall temperatures. Numerical results are presented to show the flow and thermal fields in a single flow passage. In forced convection it is shown that mid-dimple ‘peaking’ of the Nusselt number distribution may be related directly to the convective influence of distorted velocity profiles.  相似文献   

15.
This paper reports a numerical study of the thermal and fluid-dynamic behaviour of laminar mixed convection in a non-Newtonian fluid inside a vertical duct enclosed within two vertical plates that are plane and parallel, having linearly varying wall temperatures. The other inlet conditions consist of a parabolic distribution of the velocity field and a constant fluid temperature. The problem is assumed to be steady and two-dimensional. The formulation of a mathematical model in dimensionless co-ordinates and the discretisation of the governing equations by means of the finite difference method, have made it possible to create a numerical code developed in Matlab environment. The study was focused on the simultaneous presence and on the mutual interaction of natural and forced convection, starting from the effects of the re-circulation on the heat transfer. The quantitative results of the analysis, which are strongly affected by the variation of the Grashof number and of the exponent of the power law, are given in terms of graphic visualisations of the fluid velocity profiles and, when the governing parameters vary, of the various geometries characterising the heat transfer.  相似文献   

16.
ABSTRACT

In this study, numerical calculations by single- and two-phase models of nanofluid turbulent forced convection in a three-dimensional wavy channel with uniform wall temperature are investigated. The numerical results for the Nusselt number ratio (Nu/Nu0) show that the heat transfer performance of a symmetric wavy channel performs better than that of an in-line wavy channel. The multi-parameter constrained optimization procedure integrating the design of experiments (DOEs), response surface methodology (RSM), genetic algorithm (GA), and computational fluid dynamics (CFD) is proposed to design the nanofluid turbulent convection of the three-dimensional wavy channel.  相似文献   

17.
ABSTRACT

Heating is the main biological effect of the electromagnetic (EM) fields to human eye. This study intends to focus attention on the differences in the heat transfer characteristics of the human eye induced by EM fields in different body positions. The effect of three different body positions – sitting, supine, and prone – on natural convection of aqueous humor (AH) in the anterior chamber of the eye is systematically investigated. The specific absorption rate (SAR) value, fluid flow, and the temperature distribution in the eye during exposure to EM fields are obtained by numerical simulation of EM wave propagation. In this study, the frequencies of 900 and 1,800 MHz are chosen for the investigations. The heat transfer model used in this study is developed based on natural convection and porous media theories. The results show that the AH temperature inside the anterior chamber is the highest in the supine position at both frequencies. It is found that during exposure to EM fields, body position plays an important role on AH natural convection and the heat transfer process within the anterior chamber and its periphery in the front part of the eye. However, the body position has no significant effect on temperature distribution for the middle part of the eye. The obtained results provide information on the body position and thermal effects from EM fields exposure.  相似文献   

18.
This paper describes numerical investigations, using computational fluid dynamics, conducted to examine the heat transfer mechanisms by which air-chiller U-bends cause enhanced downstream internal convection, where single phase secondary refrigerants under laminar conditions are employed as the heat exchanger fluid. The numerical model, created using FLUENT, consists of a single heat exchanger tube pass incorporating an inlet pipe, a U-bend and an outlet pipe. The model was validated using experimental data from the literature. Numerical investigations indicate that within the U-bend, secondary flows partially invert temperature profiles resulting in a significant localised decrease in average fluid temperature at the pipe surface. As a result, downstream heat transfer enhancement is observed, the magnitude of which can exceed that typical of a pipe combined entry condition in some circumstances by greater than 20% for up to 20 pipe diameters downstream. Heat transfer enhancement was found to increase with increasing U-bend radius, but to decrease with increasing heat exchanger pipe radius and internal Reynolds number. A simple technique based on quantification of the degree of temperature inversion at the U-bend is proposed which provides a mechanism by which heat transfer enhancement can be estimated.  相似文献   

19.
This paper evaluates the characteristics of water-in-glass evacuated tube solar water heaters including assessment of the circulation rate through single ended tubes. A numerical model of the heat transfer and fluid flow inside a single-ended evacuated tube has been developed assuming no interaction between adjacent tubes in the collector array. Flow measurement using Particle Image Velocimetry (PIV) has been undertaken to validate the numerical model. The experimental rig consists of a single full-scale tube coupled to a storage tank. A non-dimensional correlation has been developed of the circulation rate through a single evacuated tube mounted at 45° inclination over a diffuse reflector. Simulation results show that the natural convection flow rate in the tube is high enough to disturb the tank’s stratification and that the tank temperature strongly affects the circulation flow rate through the tubes. Circumferential heat distribution was found to be an important parameter influencing the flow structure and circulation rate through the tube, hence a separate correlation needs to be developed if a concentrating reflector is incorporated into the collector.  相似文献   

20.
Heat transfer and fluid flow characteristics through a porous medium were investigated using numerical simulations and experiment. For the numerical simulations two models were created: a two-dimensional numerical model and a Fluent™ computational fluid dynamics (CFD) porous media model. The experimental investigation consisted of a flow channel with a porous medium section that was heated from below by a heat source. The results of the numerical models were compared to the experimental data in order to determine the accuracy of the models. The numerical model was then modified to better simulate a matrix heat exchanger. This numerical model then generated temperature profiles that were used to calculate the heat transfer coefficient of the matrix heat exchanger and develop a correlation between the Nusselt number and the Reynolds number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号