首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work deals with some machinability studies on flank wear, surface roughness, chip morphology and cutting forces in finish hard turning of AISI 4340 steel using uncoated and multilayer TiN and ZrCN coated carbide inserts at higher cutting speed range. The process has also been justified economically for its effective application in hard turning. Experimental results revealed that multilayer TiN/TiCN/Al2O3/TiN coated insert performed better than uncoated and TiN/TiCN/Al2O3/ZrCN coated carbide insert being steady growth of flank wear and surface roughness. The tool life for TiN and ZrCN coated carbide inserts was found to be approximately 19 min and 8 min at the extreme cutting conditions tested. Uncoated carbide insert used to cut hardened steel fractured prematurely. Abrasion, chipping and catastrophic failure are the principal wear mechanisms observed during machining. The turning forces (cutting force, thrust force and feed force) are observed to be lower using multilayer coated carbide insert in hard turning compared to uncoated carbide insert. From 1st and 2nd order regression model, 2nd order model explains about 98.3% and 86.3% of the variability of responses (flank wear and surface roughness) in predicting new observations compared to 1st order model and indicates the better fitting of the model with the data for multilayer TiN coated carbide insert. For ZrCN coated carbide insert, 2nd order flank wear model fits well compared to surface roughness model as observed from ANOVA study. The savings in machining costs using multilayer TiN coated insert is 93.4% compared to uncoated carbide and 40% to ZrCN coated carbide inserts respectively in hard machining taking flank wear criteria of 0.3 mm. This shows the economical feasibility of utilizing multilayer TiN coated carbide insert in finish hard turning.  相似文献   

2.
The present work deals with a comparative study on flank wear, surface roughness, tool life, volume of chip removal and economical feasibility in turning high carbon high chromium AISI D2 steel with multilayer MTCVD coated [TiN/TiCN/Al2O3/TiN] and uncoated carbide inserts under dry cutting environment. Higher micro hardness of TiN coated carbide samples (1880 HV) compared to uncoated carbide (1430 HV) is observed and depicts better resistance against abrasion. The low erosion rate was observed in TiN coated insert compared to uncoated carbide. The tool life of TiN coated insert is found to be approximately 30 times higher than the uncoated carbide insert under similar cutting conditions and produced lower surface roughness compared to uncoated carbide insert. The dominant wear mechanism was found to be abrasion and progression of wear was steady using multilayer TiN coated carbide insert. The developed regression model shows high determination coefficient i.e. R2 = 0.977 for flank wear and 0.94 for surface roughness and accurately explains the relationship between the responses and the independent variable. The machining cost per part for uncoated carbide insert is found to be 10.5 times higher than the multilayer TiN coated carbide inserts. This indicates 90.5% cost savings using multilayer TiN coated inserts by the adoption of a cutting speed of 200 m/min coupled with a tool feed rate of 0.21 mm/rev and depth of cut of 0.4 mm. Thus, TiN coated carbide tools are capable of reducing machining costs and performs better than uncoated carbide inserts in machining D2 steel.  相似文献   

3.
Physicals Vapor Deposition (PVD) coated carbide inserts were used to machine a nickel-base, C-263, superalloy under severe cutting conditions. Test results show that the TiN/TiCN/TiN coated, inserts with positive, honed and chamfered edges (Tool A) outperformed similar tools with double positive edges and no edge protection (Tool B) in terms of tool life as well as lower flank wear rate when machining under roughing conditions. The double positive edges of Tool B inserts are more susceptible to chipping action due to reduced tool-chip and tool-workpiece contact lengths/areas and associated increase in applied stresses at the cutting edge during machining. Increase in cutting conditions and variation of the cutting edge geometry did not increase the surface roughness value due to the elastic recovery of the C-263 alloy. Prolonged machining causes appreciable increase in the feed force due to the rapid work hardening of the nimonic alloy as well as the formation of hard burrs during machining  相似文献   

4.
Multilayer TiN/TiCN/TiN and single-layer TiAIN PVD coated carbide tools were used to machine a nickel base, C-263, alloy at high-speed conditions in order to investigate their performance in terms of tool life, surface finish and component forces generated during machining. The test results show that the triple layer, TiN/TiCN/TiN, coated inserts gave longer tool life when machining at higher speed and depth of cut conditions while the single layer, TiA/N, coated inserts produced better surface finish. The feed forces recorded were generally higher than the cutting forces. This could perhaps be attributed to the adverse effect of burr formation and work hardening of the workpiece associated with prolonged machining. Analysis of the test results indicate that the difference in thermal properties and tribo-chemical behaviour of both the coating and substrate materials are the major factors influencing the tribo-contact at the tool-chip interface during machining. Wear mechanisms of the coating materials can also affect tool performance in terms of tool life, surface finish and component forces.  相似文献   

5.
Tool wear is one of the most important problems in cutting titanium alloys due to the high-cutting temperature and strong adhesion. Recently, the high-speed machining process has become a topic of great interest for titanium alloys, not only because it increases material removal rates, but also because it can positively influence the properties of finished workpiece. However, the process may result in the increase of cutting force and cutting temperature which will accelerate tool wear. In this paper, end milling experiments of Ti-6Al-4V alloy were conducted at high speeds using both uncoated and coated carbide tools. The obtained results show that the cutting force increases significantly at higher cutting speed whether the cutter is uncoated carbide or TiN/TiAlN physical vapor deposition (PVD)-coated carbide. For uncoated carbide tools, the mean flank temperature is almost constant at higher cutting speed, and no obvious abrasion wear or fatigue can be observed. However, for TiN/TiAlN PVD-coated carbide tools, the mean flank temperature always increases as the increase of cutting speed, and serious abrasion wear can be observed. In conclusion, the cutting performance of uncoated inserts is relatively better than TiN/TiAlN PVD-coated inserts at a higher cutting speed.  相似文献   

6.
In the present work, the performance of cubic boron nitride (CBN) inserts was compared with coated carbide and cryogenically treated coated/uncoated carbide inserts in terms of flank wear, surface roughness, white layer formation, and microhardness variation under dry cutting conditions for finish turning of hardened AISI H11 steel (48–49 HRC). The flank wear of CBN tools was observed to be lower than that of other inserts, but the accumulated machining time for all the four edges of carbide inserts were nearer to or better than the PCBN inserts. Results showed that tool life of carbide inserts decreased at higher cutting speeds. The surface roughness achieved under all cutting conditions for coated-carbide-treated/untreated inserts was comparable with that achieved with CBN inserts and was below 1.6 μm. The white layer formation and microhardness variation is less while turning with cryogenically treated carbide inserts than the CBN and untreated carbide. At low to medium cutting speed and feed, the performance of carbide inserts was comparable with CBN both in terms of tool life and surface integrity.  相似文献   

7.
In recent years, hard machining using CBN and ceramic inserts became an emerging technology than traditional grinding and widely used manufacturing processes. However the relatively high cost factors associated with such tools has left a space to look for relatively low cost cutting tool materials to perform in an acceptable range. Multilayer coated carbide insert is the proposed alternative in the present study due to its low cost. Thus, an attempt has been made to have an extensive study on the machinability aspects such as flank wear, chip morphology, surface roughness in finish hard turning of AISI 4340 steel (HRC 47 ± 1) using multilayer coated carbide (TiN/TiCN/Al2O3/TiN) insert under dry environment. Parametric influences on turning forces are also analyzed. From the machinability study, abrasion and chipping are found to be the dominant wear mechanism in hard turning. Multilayer TiN coated carbide inserts produced better surface quality and within recommendable range of 1.6 μm i.e. comparable with cylindrical grinding. At extreme parametric conditions, the growth of tool wear was observed to be rapid thus surface quality affected adversely. The chip morphology study reveals a more favorable machining environment in dry machining using TiN coated carbide inserts. The cutting speed and feed are found to have the significant effect on the tool wear and surface roughness from ANOVA study. It is evident that, thrust force (Fy) is the largest component followed by tangential force (Fz) and the feed force (Fx) in finish hard turning. The observations yield the machining ability of multilayer TiN coated carbide inserts in hard turning of AISI 4340 steel even at higher cutting speeds.  相似文献   

8.
Titanium alloys are difficult-to-machine materials because of their poor machinability characteristics. Machining and machining performance evaluation for such materials is still a challenge. Individual machining performance indices like cutting forces, cutting energy and tool wear lead to ambiguous understanding. In this work, a Cumulative Performance Index (CPI) is defined which amalgamates non-dimensional forms of specific cutting energy, back force and average principal flank wear in turning. The CPI focuses upon simultaneous minimization of specific cutting energy, dimensional deviation and average principal flank wear. The defined index is then used to evaluate performance of five commercially available physical vapor deposited (PVD) TiAlN coated tungsten carbide/cobalt inserts vis-à-vis uncoated tungsten carbide/cobalt insert in turning of Ti-6Al-4V. Cutting forces were monitored during turning and tool wear was measured after turning experiments. The results showed that the performance of coated inserts was either comparable or poor than uncoated insert; and in no case, coated inserts performed better than uncoated insert. Although commercial recommendations are in place to use PVD coated inserts for enhanced machinability of titanium alloys, the use of coated inserts is not justified keeping in view the energy spent in coating and insignificant improvement in performance.  相似文献   

9.
Ultra-precision machines are widely used to turn aspherical or spherical profiles on mould inserts for the injection moulding of optical lenses. During the turning of a profile on a stainless steel mould insert, the cutting speed reduces significantly to 0 as the cutting tool is fed towards the centre of the machined profile. This paper reports experiments carried out to study the wear of uncoated and PVD-coated carbide tools (carbide tool coated with 2000 alternate layers of AlN and TiN, each layer 1.5 nm and carbide tool coated with 0.5 m TiN, 5.5 m TiCN and 0.5 m TiN) in the ultra-precision machining of STAVAX (modified AISI 420 stainless steel) at low speeds with and without lubricant. A sprayed mixture of compressed air, liquid paraffin oil and cyclomethicone was used as lubricant. Examination of the wear at the rake face of the tool suggests that during machining of the alloy with a hardness of 55 HRC without lubricant, the cutting edge is subjected to high compressive stress, resulting in fracture. Reducing the hardness of the alloy would therefore result in a lower stress acting on the cutting edge, thus rendering the tool less susceptible to fracture. Both the rake and the flank faces of the coated tools exhibited lower wear than the uncoated tools. This was due to the former tools possessing higher fracture resistance owing to the presence of the coating. The lubricant was effective in improving surface finish, preventing surface fracture and reducing flank wear.  相似文献   

10.
This paper investigates the effect of coolant concentration on tool performance when machining nickel-base, C-263, alloy with triple coated (TiN/TiCN/TiN) carbide insert at various (3–9%) coolant concentrations and under different cutting speed conditions. Tool life, tool-failure modes, wear rates, component forces and surface finish generated during machining were recorded, analyzed and used to formulate mechanisms responsible for tool wear at the cutting conditions investigated. Analysis of the recorded data shows that tool performance during machining is dependent on coolant concentration. 6% coolant concentration gave the best overall performance as effective combination of cooling and lubrication functions were achieved during machining. Increasing coolant concentration to 9% reduced tool performance due to a reduction of the tool-chip contact length area and the consequent increase in compressive stresses at the tool-chip and tool-workpiece interfaces. This action often leads to pronounced chipping of the tool cutting edge during machining. Friction coefficient between the workpiece material and substrate increases once the coating layer(s) is broken as a result of the direct contact between the tool substrate and the work material. This action increases mechanical wear of the tool, which in turn leads to a significant increase in the cutting force with negligible effect on the feed forces during machining.  相似文献   

11.
低温微量润滑高速铣削PH13—8Mo刀具磨损试验研究   总被引:1,自引:0,他引:1  
卞荣  李亮  何宁  赵威  戚宝运  田佳 《工具技术》2009,43(7):14-17
针对高强度不锈钢材料加工性能差、刀具耐用度低的问题,进行了硬质合金刀具在低温微量润滑条件下高速铣削高强度不锈钢PH13—8Mo的刀具磨损试验,结果表明:WSP45刀片比WXM35适合加工PH13—8Mo,低温微量润滑(cMQL)能有效地抑制刀具磨损,提高刀具耐用度;两种刀具在铣削过程中前、后刀面同时发生磨损,最终因刃口严重崩刃而失效。  相似文献   

12.
With wide applications of nickel-based superalloys in strategic fields, it has become increasingly necessary to evaluate the performance of different advanced cutting tools for machining such alloys. With a view to recommend a suitable cutting tool, the present work investigated various machinability characteristics of Incoloy 825 using an uncoated tool, chemical vapor deposition (CVD) of a bilayer of TiCN/Al2O3, and physical vapor deposition (PVD) of alternate layers of TiAlN/TiN-coated tools under varying machining conditions. The influence of cutting speed (51, 84, and 124 m/min) as well as feed (0.08, 0.14, and 0.2 mm/rev) was comparatively evaluated on surface roughness, cutting temperature, cutting force, coefficient of friction, chip thickness, and tool wear using different cutting tools. Although the CVD-coated tool was not useful in decreasing surface roughness and temperature, a significant reduction in cutting force and tool wear could be achieved with the same coated tool under a high cutting speed of 124 m/min. On the other hand, the PVD-coated tool outperformed the other tools in terms of machinability characteristics. This might be attributed to the excellent antifriction and antisticking property of TiN and good toughness due to the multilayer configuration in combination with a thermally resistant TiAlN phase. Adhesion, abrasion, edge chipping, and nose wear were the prominent wear mechanisms of the uncoated tool, followed by the CVD-coated tool. However, remarkable resistance to such wear was evident with the PVD TiAlN/TiN multilayer-coated tool.  相似文献   

13.
Multilayer-coated tool systems have been effective in controlling mechanical and thermal loads, especially in high-speed cutting regime. In this study, cutting performance of tungsten carbide tools with restricted contact length and multilayer chemical vapour deposition deposited coatings, TiCN/Al2O3/TiN (in series) and TiCN/Al2O3–TiN (functionally graded), was investigated in dry turning. Cutting tests were conducted on low carbon alloy steel AISI/SAE 4140 over a wide range of cutting speeds between 200 and 879?m/min. Results including cutting forces, chip compression ratio, shear angle, contact area inclusive of sticking and sliding phenomena and tool flank wear are presented. In particular, prediction of heat partition into the cutting tool inserts was carried out using a combination of experimental tests and the finite element method. The results show that coating layouts and cutting tool edge geometry can significantly affect heat distribution into the cutting tool. The paper clearly shows the role and potential benefits of applying different top coats on the rake and flank faces with regards contact phenomenon, impact on thermal shielding and tool wear. An appropriate coating layout selection is crucial in controlling tool wear, especially in high-speed machining.  相似文献   

14.
In the present investigation, AA6005 (ISO: AlSiMg) alloy was machined in turning operation with different cutting tools, such as uncoated cemented carbide insert, PVD TiN coated, CVD diamond coated and PCD insert, under dry environment. Effect of cutting speed was studied for each of the cutting tools with regard to the formation of built-up layer (BUL) or built-up edge (BUE). The rake surface of the tools was characterized by optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopic microanalysis. Particular emphasis was given on wear mechanism of PVD TiN coated insert, conventionally used in machining ferrous alloys, during dry turning of AA6005 alloy. It has been observed that increase of cutting speed from 200 m/min to as high as 1000 m/min could not substantially reduce formation of BUL over tool rake surface during dry machining of AA6005 alloy with uncoated or PVD TiN coated cemented carbide inserts. The potential of diamond-based tools in dry machining of aluminium alloy was also studied. Finally, the effect of cutting speed on surface finish of the workpiece machined with different cutting tools was studied during dry turning of AA6005 alloy.  相似文献   

15.
Flank wear progression and wear mechanisms of uncoated, coated with PVD applied single-layer TiAlN, and CVD applied multi-layer MT-TiCN/Al2O3/TiN cemented carbide inserts were analyzed during dry turning of hardened AISI 4340 steel (35 HRC). Experimental observations indicate that by applying a coating to the uncoated insert the limiting cutting speed increase from 62 to 200 m/min, which further extends up-to 300–350 m/min when using multi-layer coating scheme. Relatively lower wear rate seen when using single-layer TiAlN coated inserts. However, after removal of the thin layer of coating the wear rate increase rapidly, subsequently dominates the wear rate of multi-layer coated inserts. Cutting forces; especially axial and radial components have also shown the similar behavior and increase rapidly when the tool failure occurs. Flank wear, crater wear and catastrophic failure are the dominant forms of tool wear. Digital microscope and SEM images coupled with elemental analysis (EDAX) have been taken at various stages of tool life for understanding the wear mechanisms.  相似文献   

16.
Abstract

The objective of this study is to investigate the enhancement of tool life and wear resistance with a physical vapour deposition (PVD) process applied using aluminium chromium nitride (AlCrN) and titanium nitride (TiN) coating on carbide inserts. Flank wear experiments are carried out on a computer numerically controlled (CNC) machine under wet conditions with both the coated inserts. Effectiveness of the coating on the tool life and its resistance to flank wear are observed at various cutting parameters such as cutting speed and feed rate by following the principle of design of experiments (DOE). It is inferred that AlCrN coated carbide tools perform nearly 70% better than the TiN coated carbide tools under high cutting speed and feed rate. AlCrN coating also enhances the durability of tool for metal cutting and thereby improves tool life even under harsh cutting conditions. A response surface methodology (RSM) is utilised to arrive at the optimum value for the various parameters which are responsible for improving the wear resistance and tool life.  相似文献   

17.
Machinability issues in turning of Al-SiC (10p) metal matrix composites   总被引:2,自引:1,他引:1  
The paper presents the results of an experimental investigation on the machinability of fabricated aluminum metal matrix composite (A356/SiC/10p) during continuous turning of composite rods using medium grade polycrystalline diamond (PCD 1500) inserts. MMC’s are very difficult to machine and PCD tools are considered by far, the best choice for the machining of these materials. Experiments were conducted at LMW-CNC-LAL-2 production lathe using PCD 1500 grade insert at various cutting conditions and parameters such as surface roughness, specific power consumed, and tool wear were measured. Machining was continued till the flank wear land on the tool crossed 0.4 mm. The influences of cutting speed on the insert wear and built-up edges (BUEs) formation were studied. The present results reaffirm the suitability of PCD for machining MMCs. Though BUE formation was observed at low cutting speeds, at high cutting speeds very good surface finish and low specific power consumption could be achieved.  相似文献   

18.
This paper examines the performance of AlN/TiN coated carbide tool during milling of STAVAX® (modified AISI 420 stainless steel) at a low speed of 50 m/min under conventional flood and mist lubrication. Abrasion, chipping, fracture resulting in the formation of crater and catastrophic failure are the wear mechanisms encountered during machining under flood lubrication. The flank wear, and the likeliness of the cutting tool to fracture, chip and fail prematurely increased with an increase in the hardness of the workpiece and a reduction in the helix angle of the tool. Small quantity of mineral oil sprayed in mist form was effective in reducing the flank wear and severity of abrasion wear, and preventing the formation of crater and the occurrence of catastrophic failure. In milling 35 and 55 HRC-STAVAX® using a feed rate of 0.4 mm/tooth and a depth of cut of 0.2 mm under mist lubrication, the cutting edge of the 25° and 40° helix angle tools only suffered small-scale edge chipping and abrasive wear throughout the entire duration of testing. The influence of the ductility of the workpiece on the surface finish and the effectiveness of mist lubricant in improving the surface finish are also discussed.  相似文献   

19.
Hard turning with multilayer coated carbide tool has several benefits over grinding process such as, reduction of processing costs, increased productivities and improved material properties. The objective was to establish a correlation between cutting parameters such as cutting speed, feed rate and depth of cut with machining force, power, specific cutting force, tool wear and surface roughness on work piece. In the present study, performance of multilayer hard coatings (TiC/TiCN/Al2O3) on cemented carbide substrate using chemical vapor deposition (CVD) for machining of hardened AISI 4340 steel was evaluated. An attempt has been made to analyze the effects of process parameters on machinability aspects using Taguchi technique. Response surface plots are generated for the study of interaction effects of cutting conditions on machinability factors. The correlations were established by multiple linear regression models. The linear regression models were validated using confirmation tests. The analysis of the result revealed that, the optimal combination of low feed rate and low depth of cut with high cutting speed is beneficial for reducing machining force. Higher values of feed rates are necessary to minimize the specific cutting force. The machining power and cutting tool wear increases almost linearly with increase in cutting speed and feed rate. The combination of low feed rate and high cutting speed is necessary for minimizing the surface roughness. Abrasion was the principle wear mechanism observed at all the cutting conditions.  相似文献   

20.
本文对Al2O3/TiC陶瓷刀具材料切削加工G4335V高强钢时的切削性能和耐磨性进行了试验研究。结果表明:在低速切削条件下,Al2O3/TiC陶瓷刀具和硬质合金刀具(YT15)的抗后面磨损能力相差不大,而在高速切削条件下,前者的抗后面磨损能力远高于后者。Al2O3/TiC陶瓷刀具前面的磨损形式主要为粘结磨损,后面的磨损形式主要为磨粒磨损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号