首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a new type of negative dislocated seal (NDS) based on the dislocated bearing theory to investigate the influential parameters of static rotor eccentricity and dislocated ratio on the static and rotordynamic characteristics of an example seal solved with computational fluid dynamics (CFD) the flow field. The rotordynamic characteristics of the NDS were investigated in respect of the effects of rotor whirling frequency on response force, stiffness coefficients, damping coefficients and rotor system stability, by multifrequency elliptical orbit rotor whirling model. Based on the studies, we reached the following conclusions. The circumferential pressure distribution of NDS and conventional labyrinth seal (LS) presents sine periodic variation approximately, while relative to the LS, the NDS has two divergent wedge gaps and reduces the hydrodynamic pressure effects, then the circumferential pressure difference and tangential force on rotor surface decreases by about 40 %~190 %. The leakage of the NDS linearly increases with the rising eccentricity ratio and dislocation ratio approximately, and is larger (about 0.9 %~1.5 %) than the LS. The direct stiffness coefficients of the two seals increase with the rise of rotor whirling frequency, while the absolute values of both the cross-coupled stiffness coefficients and the damping coefficients decrease with raising rotor whirling frequency. Compared with the LS, the NDS has smaller (about 28.8 %~206.2 %) cross-coupled stiffness coefficient, larger (about 26.15 %~60.39 %) effective damping coefficient, and good stability of rotor system. This study has developed a novel seal structure to improve the seal performance of turbomachinery such as aeroengine.  相似文献   

2.
反旋流对密封静力与动力特性影响的理论与试验研究   总被引:4,自引:0,他引:4  
设计加工无/有反旋流共4种密封结构,从理论与实验两个方面研究反旋流对密封静力与动力特性的影响规律。建立反旋流密封静力特性CFD模型,理论分析反旋流对密封间隙流体切向速度、周向压力分布以及泄漏特性的影响;设计搭建反旋流密封动力特性试验台,试验测试无/有反旋流密封的泄漏特性,应用不平衡同频激励法试验研究反旋流对密封动力特性的影响。研究结果表明:反旋流可减小密封间隙流体的切向速度,进而降低密封间隙流体的周向压力差,且密封间隙流体周向压差随切向速度的减小而降低,这是反旋流抑制密封气流激振力的主要原因;密封的泄漏量随进出口压比的增加而增大,两者近似呈线性关系;与无反旋流密封相比,反旋流密封增加了密封的泄漏量,且随着进出口压比的增加,两者泄漏量差异增大;密封的动力特性系数的随密封进出口压比与转速的增加而增大。在相同工况下,主刚度大于交叉刚度约一个数量级,主阻尼与交叉阻尼数量级相同,且主阻尼大于交叉阻尼;反旋流可有效降低密封的等效刚度,增加密封的等效阻尼,提高密封的稳定性。  相似文献   

3.
The oil-film-lubricated mechanical face seal is a kind of pure hydrodynamic lubricated noncontacting mechanical face seal with zero leakage. On the basis of systematic theoretical analyses, the design calculation formulas under zero-leakage condition for mechanical face seals with different spiral groove patterns, including double-row spiral grooves such as splay pattern and single-row spiral grooves, are derived. The effects of groove geometry including number of grooves, balance ratio, spring force, rotating speed, and differential pressure on the seal performance are discussed in detail. Finally, the design guidelines of this kind of seal with zero leakage and no wear are put forward. The seals designed according to the guidelines can withstand the pressure disturbance and speed change by means of a slight change of oil-film thickness. Seals developed according to the design guidelines have been tested on a test rig in detail and applied successfully in high-speed turbocompressors of the oil refinery and petrochemical industries.  相似文献   

4.
A new analytical approach is presented for designing controllers to regulate the axial clearance of a coned-face flexibly mounted stator mechanical gas face seal. The seal axial clearance is controlled by regulating the back-pressure force acting on the stator. The controllers are systematically designed using a completely analytical seal system model in which the linearized gas film stiffness and damping properties are represented by a constitutive model. An algorithm based on this model is derived to calculate the critical axial clearance where the seal is marginally stable, and a stable reference axial clearance is chosen. Proportional and proportional-plus-integral controllers are designed and analytically studied in terms of closed-loop stability and speed of response using the system model. The controllers are verified using a full numerical simulation (including nonlinear effects) of the mechanical gas face seal system, and the results demonstrate the effectiveness of both controllers to maintain the reference axial clearance.  相似文献   

5.
A numerical model of an elastomeric reciprocating hydraulic rod seal, with both a primary and a secondary lip, has been developed. It is applicable to cases in which the stroke length is significantly larger than the seal width. Coupled fluid mechanics, contact mechanics, and deformation analyses are applied to each lip. Mass conservation and the pressure of the intervening fluid couple the two lips to each other. The leakage, the film thickness distribution, the fluid and contact pressure distributions, and the friction force are predicted for both the outstroke and the instroke for a typical seal, operating with mixed lubrication.  相似文献   

6.
Experiments to identify the leakage and dynamic force coefficients of a plain annular gas (air) seal are presented. The test rig consists of a rigid shaft and a seal housing supported from elastic rods. Two orthogonal impact guns excite the test seal and housing, and displacement and acceleration sensors measure the seal dynamic forced response. A frequency domain parameter identification technique allows accurate estimations of the system stiffness and damping force coefficients. Tests with no journal rotation and at 3600 rpm are conducted for pressure ratios (Ps/Pa) from 1.5 to 3.0 for centered and eccentric (50 percent of clearance) seal conditions. In all cases, measured mass flow rates and identified direct damping coefficients steadily increase with increasing pressure ratios. The direct stiffnesses, however, exhibit a peculiar behavior at and around a pressure ratio of 2.0. As the pressure ratio increases from 1.5 to 2.0, the direct stiffnesses decrease and become negative. Then, as the pressure ratio rises to 3.0, the stiffnesses steadily increase and become positive. A bulk-flow model, which includes the effect of transition flow from laminar to turbulent, demonstrates reasonable agreement with the experimental observations.  相似文献   

7.
A mathematical model is developed to allow performance prediction of all-liquid noncontacting mechanical seals with regular microsurface structure in the form of hemispherical pores. Seal performance such as the equilibrium face separation, friction torque and leakage across the seal are calculated and presented for a range of sealed pressure, pore size and pore ratio of ring surface area. An optimum pore size is found that depends on the other variables and corresponds to maximum axial stiffness and minimum friction torque. Also, a critical pore size is found above which seal failure is possible.  相似文献   

8.
Commonly scaled cryogenic fluids include liquefied gases such as nitrogen, argon and oxygen, pumped both on site and from road tankers at temperatures approaching — 200°C (392°F). Traditionally, cryogenic sealing has employed conventional contact sealing technology, the seal typically being of a metal bellows design.

However, because most liquefied gases are pumped at temperatures close to their boiling points, vaporization at the sealing interface is a major problem. Dry running causes accelerated face and seat wear and short seal life.

A new type of seal has been developed which combines two critical seal, technologies. It comprises a profiled noncontacting seal face and seal as the primary seal, and a welded metal bellows as the secondary seal, and spring.

The paper will outline the technology employed in solving this cryogenic sealing application. It will describe the equipment and environments that are typically employed, focusing on those issues that are relevant, to the shaft seal. Some examples of operating installation will be given, together with measurements taken from them.  相似文献   

9.
Adequate sealing in rotating machinery reduces secondary leakage and results in more efficient and stable systems. Labyrinth seals are most common, although brush seals are popular in specialized applications. The hybrid brush seal (HBS) is a novel design that adds to the bristle brush matrix a number of cantilever pads that rest on the rotor surface. Upon shaft rotation the pads lift due to the generation of a hydrodynamic gas film, and the brushes effectively seal an upstream pressure. Hence, the HBS has no wear and no local thermal distortion effects. This article presents measurements of leakage versus pressure differential obtained in a three-tooth labyrinth, a conventional brush seal, and a hybrid brush seal for operation at high temperature (300°C) and with shaft surface speeds to 26 m/s. The measurements demonstrate that the HBS leaks ~ 31% less than a standard brush seal and is significantly better (~ 68%) than a similarly sized labyrinth seal. As temperature increases, the labyrinth seal leakage decreases because its clearance changes due to the thermal growth of the components. The HBS, on the other hand, shows leakage that is nearly insensitive to air inlet temperature. The measurements demonstrate HBS as a reliable seal technology for use in gas turbines, for example.  相似文献   

10.

The oil-film-lubricated mechanical face seal described here is a hydrodynamically lubricated, noncontacting, mechanical face seal with zero leakage. On the basis of systematic theoretical analyses, research on design methods, and experimental investigations, many field applications have been made. The experimental investigations include test rig development; long-time high-speed running tests; frequent start-up and shut-down tests; measurements of the seal leakage, face temperature, and characteristics of the self-circulating screw pump; observation, measurement, and solution of interface wear, and so on. Until now, this new seal design has been successfully applied in more than 40 high-speed turbocompressors in the oil refinery and petrochemical industries, achieving zero leakage and long operation. These seals are all designed with different face spiral-groove patterns, structure arrangements, and supporting systems.  相似文献   

11.
Deep sea compression systems must work under strenuous conditions with either gas in liquid or liquid in gas mixtures, mostly inhomogeneous. Off-design operation affects the mechanical system's overall efficiency and reliability, with penalties in leakage and rotordynamic performance of secondary flow components, namely, seals. This article introduces a test rig to characterize the leakage and dynamic force coefficients of a short-length annular seal (L/D = 0.36, clearance = 0.127 mm) operating under various flow regimes ranging from pure gas, to bubbly (liquid in gas), to foamy (gas in liquid), to pure liquid. The test rig includes of rotating journal and a softy supported cartridge that make a clearance annular seal that is supplied with a liquid/gas mixture. Flowmeters record the fluid's passage, and with manual control of the streams, the mixture has a known liquid (or gas) volume fraction at the seal inlet plane. Two orthogonally mounted electromagnetic shakers excite the cartridge with periodic (single-frequency) forces spanning a wide frequency range. Eddy current sensors and accelerometers record the seal cartridge motions and a frequency domain parameter identification method delivers the seal dynamic force coefficients.

For tests with a pressure supply/pressure discharge ratio = 3.0 and 3.5 and a nonrotating journal, the article reports the flow rate for an ISO VG10 oil in air mixture with liquid volume fraction (LVF) at the inlet plane increasing from pure gas to pure liquid. Wet seal stiffness and mass and damping force coefficients follow for a seal operating with a pressure supply/pressure discharge ratio = 2.0 and operating with air (only) and also with an oil-in-air mixture with inlet LVF = 2% and 4%. The experimental results, the first reported, reveal that a small amount of liquid increases the damping coefficients of the wet seal 10-fold (or more). Predictions from a computational bulk flow model also demonstrate that the seal damping coefficient varies greatly with small contents of liquid in the oil/gas mixture, although agreement with the experimental force coefficients is not compelling due to the likely inhomogeneity of the mixture flowing though the seal.  相似文献   


12.
The gas-film-lubricated mechanical face seal is a combined hydrodynamic and hydrostatic seal with positive leakage. Up to now, it has been widely accepted by end, users and builders of high-speed turbo compressors. The groove technology on the sealing face of the seat is one of the core technologies of dry gas seals. This article presents a patented herringbone spiral-grooved gas seal. Its one-dimensional analytical solution and two-dimensional numerical solution methods for the gas-film pressure distribution on the sealing face are presented. Up to now, more than 200 gas seals adopting this groove technology have been applied successfully in high-speed turbo compressors that deal with dangerous process gas in the oil refinery and petrochemical industries. The theoretical analyses and field applications show that gas seals with herringbone spiral grooves are advanced and practicable.  相似文献   

13.
The results of an analytical investigation are given for the effect of axially grooved floating oil ring seals on the leakage flow and stability of a centrifugal gas compressor. The finite element method was used to solve the non-linear and coupled hydrodynamic and thermal equations for pressure and temperature distributions in the oil seal ring with and without the axial grooves. The peturbation technique was used to obtain the static and dynamic characteristics of the oil seal. The results for selected cases of axial grooving are presented in graphical form for operation at various eccentricities. The non-dimensional leakage flow results correlate well with previously published results calculated by narrow groove theory. The stability of a multi-stage gas compressor is evaluated for different configurations of the oil seal grooving geometry. The compressor rotor shaft finite element model includes a multi-level analysis for the oil seal rings that permits the evaluation of the floating seal influence on the total system stability. Results are given for both low and high-pressure sealing conditions, which simulate test stand and field operating conditions. The results show that the added grooves enhance the stable operation of the rotor system for low-pressure fixed seal conditions arid reduce the system stability at lower eccentricities for low-pressure floating seal conditions. In high pressure conditions the added grooves enhance the stability of the system for both fixed and floating seal conditions.  相似文献   

14.
螺旋槽干式气体端面密封性能的数值分析   总被引:14,自引:5,他引:14  
建立了螺旋槽气体密封(S-DGS)端面内的等温可压缩二维流气体雷诺方程,用有限元法计算了端面压力分布,将压力分布、密封开启力和气膜刚度的计算值与有关文献值进行了比较。分析了密封端面几何参数对密封性能的影响,各几何参数的推荐值可以确保密封在低泄漏量条件下的高刚度值,并据此提出了S-DGS端面几何参数选择的一般原则,对密封结构优化没计具有一定指导意义。  相似文献   

15.
A Finite Element model for the noncontacting gas face seal is developed based on the modified Reynolds Equation developed by Fukui and Kaneko (4), (5) that considers the slip flow effects. Numerical studies of a representative spiral groove seal at the slow speed (≤, 500 rpm) and the low pressure (≤ .303 MPa) conditions showed that slip flow can significantly affect the seal performances such as the lift-off speed, leakage rate, load carrying capacities. Without the consideration of the slip flow effect, the lift-off speed and the corresponding leakage rate would be greatly underestimated, especially at near ambient pressure condition. By examining the F-h characteristic curves, it was found that under the parameters presented in the present study the slip flow could be significant for Knudsen number, Kn as small as .05, and the slip flow in effect reduces the viscous pumping resulting in a loss of load carrying capacities.  相似文献   

16.
A general formulation of the instrumental variable filter (IVF) method for parameter identification of a n-DOF (Degrees Of Freedom) mechanical linear system is presented. The IVF is a frequency domain method and an iterative variation of the least-squares approximation to the system flexibilities. Weight functions constructed with the estimated flexibilities are introduced to reduce the effect of noise in the measurements, thus improving the estimation of dynamic force coefficients. The IVF method is applied in conjunction to impact force excitations to estimate the mass, stiffness, and damping coefficients of a test rotor supported on a squeeze film damper (SFD) operating with a bubbly lubricant. The amount of air in the lubricant is varied from nil to 100 percent to simulate increasing degrees of severity of air entrainment into the damper film lands. The experimental results and parameter estimation technique show that the SFD damping force coefficients increase as the air volume fraction in the mixture increases to about 50 percent in volume content. The damping coefficients decrease rapidly for mixtures with larger air concentrations. The unexpected increase in direct damping coefficients indicates the complexity of the SFD bubbly flow field and warrants further experimental verification.  相似文献   

17.
新型双列螺旋槽端面密封的静态性能分析   总被引:10,自引:6,他引:4  
研究了一种新型双列螺旋槽机械密封结构的工作机理。从可压缩流体Reynolds方程出发,用有限元数值计算的方法得出了一定工况条件下双列螺旋槽机械密封端面间稳态下的密封间隙、液体的压力分布、开启力、供液小孔的压力损失及泄漏量等。计算结果表明,供液小孔所产生的压力损失提高了双列螺旋槽机械密封的静态轴向刚度。  相似文献   

18.
A numerical analysis of a reciprocating hydraulic rod seal with a plunge ground rod has been performed. It consists of coupled fluid mechanics, contact mechanics, and deformation analyses. The fluid mechanics analysis consists of a finite volume solution of the Reynolds equation. The deformation is computed with a finite element analysis. The contact of the seal asperities with the rod utilizes the Greenwood-Williamson model and the rod surface geometry is treated deterministically. The fluid transport, friction force, contact pressure distribution, and fluid pressure distribution in the sealing zone have been computed for a polyurethane U-cup seal and for a step seal with a polytetrafluoroethylene (PTFE) sealing element and a nitrile energizer. These have been compared with the results for a smooth rod.  相似文献   

19.
提出一种密封入口周向均匀设置有涡流槽的新型密封结构,建立了传统迷宫密封与新型涡流槽密封泄漏特性及动力特性求解模型,在实验验证数值计算方法准确性的基础上,通过比较分析了传统迷宫密封与新型涡流槽密封在不同进出口压比、预旋比工况下的泄漏特性与动力特性,研究了新型涡流槽结构对密封泄漏特性及动力特性的影响机理。研究结果表明:随着涡流槽数量的增加,涡流槽密封的泄漏量逐渐降低;在同一压比下,不同涡流槽数新型密封的泄漏量之间差值随着压比的增大而增大。当压比为6时,64涡流槽的新型密封较传统迷宫密封,泄漏量下降了3.37%;在高预旋比的工况下,不同涡流槽数量密封的切向气流力均与转子涡动方向相反,起到抑制转子涡动的作用,且随着涡流槽数量的增加,切向气流力也随着增大;随着转子涡动频率的增大,三种不同涡流槽数量密封的交叉刚度先减小到负值然后增大到正值。涡流槽密封的有效阻尼均高于传统迷宫密封,新型涡流槽密封可以提高转子系统的稳定性。  相似文献   

20.
A rotary lip seal, widely used in machines containing rotating shafts, is usually protected from mechanical and thermal damage by a thin film of lubricant under the lip, separating the lip and the shaft surfaces. However, under some transient conditions such as those during startup and shutdown, the fluid film is not fully established or it breaks down, and the seal operates in the mixed lubrication regime. To simulate such cases, a transient mixed lubrication analysis has been developed. It generates predictions of such seal operating characteristics as load support sharing between hydrodynamic and contact pressure, contact and cavitation area ratio, the reverse pumping rate, and the average film thickness. In most previous numerical simulations of the rotary lip seal, the shaft surface is modeled as perfectly smooth. In the present study, a more realistic shaft surface with asperities is used, and the effect of the shaft surface roughness on the behavior of the seal is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号