首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper numerically investigates the installation of the transverse rectangular cylinder along the gas diffusion layer (GDL) in the flow channel for the cell performance enhancement of a proton exchange membrane fuel cell (PEMFC). The effects of the blockage at various gap sizes and the width of the cylinder on the cell performance enhancement have been studied with changing the gap ratios λ = 0.05–0.3, for the same cylinder) and the width-to-height ratios (WR = 0.66–1.66, for the same cylinder height and gap ratio). The results show that the transverse installation of a rectangular cylinder in the fuel flow channel effectively enhances the cell performance of a PEMFC. In addition, the influence of the width of the cylinder on the cell performance is obvious, and the best cell performance enhancement occurs at the gap ratio 0.2 among the gap ratios of 0.05, 0.1, 0.2, and 0.3.  相似文献   

2.
Three-dimensional unsteady flow over a bluff body located parallel to a wall, kept at different gap height from the wall, has been studied numerically. The bluff body considered is a rectangular cylinder with two different aspect ratios, B/D = 1 and B/D = 2, where B and D are the width and height of the cylinder, respectively. The flow is considered as a laminar flow, and the Reynolds number based on the height of the cylinder cross section and oncoming reference velocity is 450. Numerical study is carried out by varying the distance of the cylinder from the wall, and the development of the vortex shedding phenomenon under the influence of the wall is investigated. From previous experiments, it is observed that as the distance between the wall and the cylinder decreases, the wake behind the cylinder becomes stationary and the vortex shedding is suppressed. The present numerical study confirms a similar trend. Periodic activity in the downstream of the flow is disturbed completely with decreasing gap between the wall and the cylinder.  相似文献   

3.
Heat transfer in a PEMFC flow channel   总被引:2,自引:0,他引:2  
A numerical method was applied to the heat transfer performance in the flow channel for a proton exchange membrane fuel cell (PEMFC) using the finite element method (FEM). The heat transfer enhancement has been analyzed by transversely installing a baffle plate and a rectangular cylinder to manage flow pattern in the flow channel of the fuel cell. Case studies include baffle plates (gap ratios from 00.05 to 0.2) and the rectangular cylinder (width-to-height ratios from 0.66 to 1.66 with a constant gap ratio of 0.2; various gap ratios from 0.05 to 0.3 with a constant width-to-height ratio 1.0) at constant Reynolds number. The results show that the transverse installation of a baffle plate and a rectangular cylinder in the flow channel can effectively enhance the local heat transfer performance of a PEMFC. The installation of a rectangular cylinder has a better effective heat transfer performance than a baffle plate; the larger the width of the cylinder is the better effective heat transfer performance becomes.  相似文献   

4.
This work performed the first numerical investigation on the forced convection of flow past two tandem rectangular cylinders in a channel at Re?=?100. The aspect ratio (AR) and gap ratio (GR) of the two cylinders are chosen at AR?=?1(1)4 and GR?=?1(1)8, respectively. The objective of the present work is to explore the effects of AR and GR on the characteristic flow and heat transfer quantities for the rectangular geometry that has not been studied before. The effects of the two parameters are presented by the instantaneous flow pattern, characteristic aerodynamic and heat transfer quantities, local heat transfer rate, flow patterns in the gap and near wake, and temperature distribution on the channel walls. Both time-averaged and fluctuating quantities are analyzed and presented. Numerical results reveal that for cylinders of all ARs, there are two flow regimes categorized based on the GR: the steady flow regime at GR?≤?3, where the gap flow is steady, and the unsteady flow regime at GR?≥?4. The characteristic aerodynamic and heat transfer quantities abruptly change as the flow transits from steady to unsteady regime especially for the downstream cylinder. The time-averaged and maximum fluctuating local heat transfer rate for the upstream cylinder almost does not vary with the GR, whereas they substantially vary for the downstream cylinder. The AR affects the magnitude of the quantities but not their variation trends. For flows in the unsteady regime, the recovery of the wake flow after the downstream cylinder is much more rapidly than those of steady flows due to the acceleration arising from the instability brought by the incoming shedding vortices. The violent shedding also effectively enhances heat transfer and increases the temperature of the channel walls.  相似文献   

5.
A numerical study of laminar two-dimensional natural convection heat transfer from a uniformly heated horizontal cylinder rotating about its center, and placed in an isothermal rectangular enclosure, is performed using a spectral element method. The physical aspects of the flow and its thermal behavior are studied for a wide range of pure natural convection to mixed convection at low and high rotational speeds of the cylinder. The computer program has been validated against experimental correlations available on pure natural convection of heated bodies in enclosures. The rotation of the cylinder has been found to enhance the heat transfer. At low ratios of Rayleigh number to the square of the rotational Reynolds number, Ra / Reω 2, the maximum temperature on the cylinder surface is decreased by as much as 25–35% from similar cases with fixed cylinders. At moderate values of Ra/ Reω 2, the thermal plume rising above the cylinder is shifted in the rotation direction and the angular shift decreases as Ra / Reω increases. The rotation produces more uniform temperature and shear stress distributions around the cylinder surface. At high Rayleigh numbers the increase in rotation reduces the cylinder mean Nusselt number by 2–10% as compared with the fixed cylinder.  相似文献   

6.
The present study numerically investigates two-dimensional laminar fluid flow and heat transfer past a circular cylinder near a moving wall. Numerical simulations to calculate the fluid flow and heat transfer past a circular cylinder are performed for different Reynolds numbers varying in the range of 60–200 and a fixed Prandtl numbers of 0.7 (air) in the range of 0.1 ? G/D ? 4, where G/D is the ratio of the gap between the cylinder and a moving wall, G and the cylinder diameter, D. The flow and thermal fields become the steady state below the critical gap ratios of 0.8, 0.4 and 0.2 for the Reynolds numbers of 60, 80 and 100, respectively. As the gap ratio decreases, the magnitude of lift coefficient for all Reynolds numbers increased significantly with diminishing G/D due to the ground effect. The cases of Reynolds numbers of 60, 80 and 100 revealed the sharp slope of drag coefficient in the range of the gap ratio where the flow transfers from the unsteady state to the steady state. As the Reynolds number decreases, the variation of Nusselt is much significant and increases considerably with decreasing G/D.  相似文献   

7.
Abstract

Two types of novel trapezoidal battery modules with taper angles of 60° and 90° are proposed. Flow and heat transfer characteristics of the battery modules are investigated numerically and compared with rectangular battery module. Results show that acceleration of fluid, cell arrangement, and gap spacing are three main factors influencing the velocity and temperature distribution in trapezoidal battery modules. Combination of water cooling and trapezoidal battery module with taper angle of 60° is an optimal choice, and the maximum cell temperature difference can be decreased as high as 27% as compared to that of traditional rectangular battery module.  相似文献   

8.
ABSTRACT

We analyzed the thermal stress on a thermoviscoelastic hollow cylinder with temperature-dependent thermal properties with the finite difference method. It was gradually heated at the inner surface and the outer surface was kept at the initial temperature. The cylinder material was thermorheologically simple and had a temperature-dependent coefficient of linear thermal expansion, thermal conductivity, and thermal diffusivity (and/or specific heat). A bisphenol A–type epoxy resin was chosen as the thermoviscoelastic material of the cylinder for numerical analysis. Based on these results, we discuss the effects of thermoviscoelasticity and temperature-dependent thermal properties on the stress field.  相似文献   

9.
Abstract

A common approach for lower emission of NOx from diesel engines is to use exhaust gas recirculation (EGR) coolers where part of the exhaust gas is returned to the cylinder to reduce the combustion temperature. Nonetheless, the deposition of various species, i.e. soot particles, on surfaces deteriorates the thermal efficiency of EGR coolers. This study investigated the impact of surface treatment on particulate fouling of a rectangular EGR cooler. An experimental setup was assembled through which the uncoated and coated plates were exposed to the flow of exhaust flue gases. The cooler surfaces were coated by ceramic-based materials with resistance to high temperatures by spraying. The results showed that surface modification abated soot deposition to some extent and the deposit layer was easily flaked off with a force of 0.8 N when it was scratched with a nano-intender. Contrariwise, the deposit formed on the uncoated surface did not result in similar propensity and instead it required a larger force of 2.25 N. This implies weaker stickiness of soot deposit on the investigated coatings compared to baseline stainless steel surface. It was also found that the electron donor component of surface energy would determine the tendency of a surface to foul or not.  相似文献   

10.
The work investigated the forced convection heat transfer of the heat sink situated in a rectangular channel by considering the bypass effect. The fluid medium was air. The relevant parameters were the Reynolds number (Re), the relative top by‐pass gap (C/H), and the relative side by‐pass gap (S/L). The size of the heat sink was 60 mm (L)×60 mm(W)×24 mm(H). Two heat sinks were employed as test specimens: (A) the 0.9‐porosity aluminum foam heat sink and (B) the 0.9‐porosity aluminum foam heat sink with a 20 mm diameter copper cylinder. The copper cylinder was used as a conductive pipe of heat sink. The average Nusselt number was examined under various forced convection conditions. Experimental results demonstrate that increasing by‐pass space decreased the Nusselt number. Besides, the average Nusselt number of mode B heat sink was higher than that of mode A heat sink by 30% for the case without by‐pass flow. The heat transfer enhancement by the copper cylinder would decline as the by‐pass space grew. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20247  相似文献   

11.
The present study investigates three-dimensional characteristics of fluid flow and heat transfer around a wavy cylinder which has the sinusoidal variation in the cross sectional area along the spanwise direction. The three different wavelengths of π/4, π/3 and π/2 at the fixed wavy amplitude of 0.1 have been considered to investigate the effect of waviness on especially the forced convection heat transfer around a wavy cylinder when the Reynolds and Prandtl numbers are 300 and 0.71, respectively. The numerical solution for unsteady forced convective heat transfer is obtained using the finite volume method. The immersed boundary method is used to handle the wavy cylinder in a rectangular grid system. The present computational results for a wavy cylinder are compared with those for a smooth cylinder. The fluid flow and heat transfer around the wavy cylinder depends on both the location along the spanwise direction and the wavelength. The time- and total surface-averaged Nusselt number for a wavy cylinder with λ = π/2 is larger than that for a smooth cylinder, whereas that with λ = π/4 and π/3 is smaller than that for a smooth cylinder. However, because the surface area exposed to heat transfer for a wavy cylinder is larger than that for a smooth cylinder, the total heat transfer rate for a wavy cylinder with different wavelengths of λ = π/4,π/3 and π/2 is larger than that for a smooth cylinder.  相似文献   

12.

The thermal performance of rectangular plate fins circumscribing elliptic tubes is presented in this paper. Based on the assumption of uniform convective heat transfer the two-dimensional conduction equation has been formulated, and the solution has been obtained through the finite element method. Performance of rectangular plate fins for both inline and staggered arrangement of tubes has been investigated for a variation of geometric and thermo-geometric parameters. The necessity of optimizing the fin geometry for a given fin surface area has also been highlighted.  相似文献   

13.
14.
ABSTRACT

Steady, laminar natural convection flow from a horizontal circular cylinder with a heated core region has been theoretically analyzed by taking account of the thermal conduction of the core region. The problem is conjugate, and the main focus of the study is to examine the effect of conduction in the core region on the natural convection flow from the cylinder. The governing equations were solved numerically using a finite difference technique. The effects of various parameters are presented in graphical form. Approximate solutions for the average boundary temperature at the surface of the cylinder and for the average Nusselt number are also found. In the parametric range investigated, both the theoretical and numerical results predict nearly the same values for the average boundary temperature at the surface of the cylinder and the same values for the average Nusselt number, showing the validity of the present analysis.  相似文献   

15.
Abstract

The characteristics of thermally induced failure are investigated for a hollow circular cylinder exposed to a convective cooling at the inner surface. The transient fields of both temperature and thermal stresses are given in closed forms over the full range of Biot number. The thermal shock resistance (TSR) is analyzed based on two distinct failure criteria. Namely, the strength-based failure criterion is adopted for a nearly flaw-free cylinder while the fracture toughness-based one is used for the counterpart with an inner crack-like flaw. From each criterion, the admissible maximum temperature drop is obtained assuring that a hollow cylinder can tolerate without failure. The influence of flaw size on the TSR is quantified and a criterion-selection diagram is proposed for the TSR characterization. These results are deemed to be of importance from the perspective of estimating the TSR of a hollow circular cylinder.  相似文献   

16.
Abstract

This paper presents a theoretical study of the stresses in an infinite circular solid cylinder subjected to rapid surface heating and cooling. A quasistatic, uncoupled, thermoelastoplastic analysis based on the incremental theory of plasticity is formulated, and a numerical procedure is developed for a method of successive elastic solutions. The material of the cylinder is assumed to have temperature-dependent properties and to be characterized by the Romberg-Osgood stress-strain relation. The transient and residual stress distributions are discussed in detail, along with variations of the equivalent stress and plastic strain with time.  相似文献   

17.
A plastic solar concentrating optical film with horizontal cylinder micro-lens array (HCMA) is presented in this study. The solar concentrator (SC) is in the form of optical film with HCMA and it is attached on the surface of a solar cell. This film is a polymethylmethacrylate (PMMA)-based optical layer. Compared with a plain solar collecting optical film without HCMA, the solar collecting optical film with HCMA can reduce the opportunity of reflection as light arrives at the surface and therefore can increase the refraction coefficient. As a result, the gain of photovoltaic power can be improved with the SC. Light is efficiently refracted by the HCMA and absorbed by the solar cell without the need of a solar tracking mechanism. Optimization of geometrical parameters of HCMA such as contact angle and gap (interspace) between each horizontal cylinder micro-lens is designed by simulation. The procedures of fabrication include reflow process, nickel-cobalt (Ni-Co) electroplating, and molding process. The measurement equipment of NEWPORT Oriel 91160+MODEL 6285 is utilized to measure the parameters such as open-circuit voltage Voc, short-circuit current Isc, and fill factor F.F., relating to the efficiency of the complete system. The experimental results show that a gain of photovoltaic power of about 3.30% is obtained with a contact angle of 62° and a gap of 15 μm.  相似文献   

18.
Abstract

This paper is a theoretical analysis of the thermoelastic effect upon accuracy in the machining of metals. The problem is reduced to the unsteady thermoelastic analysis of a solid cylinder heated on the surface axisym-metrically by a moving heat source under an axial restraint. The thermal and elastic distortions of the workpiece are computed, and the error in the shape is plotted.

  相似文献   

19.
Abstract

Experiments have been performed to determine the natural-convection heat transfer characteristics of vertically oriented shrouded heat sinks (finned surfaces) of rectangular profile under uniform heat flux condition applied to the base. The size and configuration of the heat sink, the power dissipated, and the clearance gap between the shroud and the fin tips were varied during the experiments. The heat transfer medium was air. The temperatures were maintained below 150° during the experiments, which is the maximum allowable operation temperature for most silicon-based electronic components. It was found that shrouding, in general, significantly enhances heat transfer from the heat sinks. For a fixed heat flux and heat sink configuration, the maximum temperature on the heat sink dropped as the clearance was increased, attained a minimum, and then started to rise again. The effect of the shroud on 'the maximum temperature and the average Nusselt number is illustrated  相似文献   

20.

Mist cooling is expected to contribute to better steel products because it enables uniform and moderate cooling in steel-making processes. In this study, experimental data were obtained to understand the mist cooling process in a high-temperature cylinder. The wetting phenomenon on the cylinder surface was also observed with an installed CCD camera. Comparing these results with those from previous investigations, we found that our cooling curve corresponded to two distinct heat transfer regimes in mist cooling. A simplified model from the analysis was introduced to simulate the cooling curve in each heat transfer regime. The estimated cooling curves by this model agreed with the experimental data in one regime and had a similarity in the other regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号