首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Large-scale molecular dynamics simulations were performed to study the sliding process of rough surfaces with and without lubricant. In the dry contact, a linear relationship has been observed between the load and the contact area for surfaces with large root mean square (RMS) roughness. However, it becomes nonlinear when the RMS is small. In the presence of adhesion, small roughness results in a large friction force when the surfaces are flattened and the contact area reaches 60 %. In order to confirm this observation, nonadhesive models have been established with an observation that under the combined influence from roughness and adhesion, the contact area plays a crucial role to determine whether the dry sliding is under the domination of roughness or adhesion. In the lubricated sliding, an increase in friction force has been found for the partially lubricated condition because the asperity contact still accounts for a great deal of resisting force. Besides, the lubricant exerts a comparable resisting force to the sliding.  相似文献   

2.
A. Begelinger  A.W.J. De Gee 《Wear》1974,28(1):103-114
The mechanism of thin film lubrication of sliding point contacts of AISI 52100 steel has been studied as a function of load, sliding speed, composition and temperature of the lubricant.Below certain critical combinations of Hertzian pressure, speed and temperature the surfaces are kept apart by an elastohydrodynamic lubricant film. The load carrying capacity of this film depends primarily on the effective viscosity of the lubricant in the contact region which decreases with bulk oil temperature and with increasing sliding speed, because of friction induced thermal effects. After breakdown of the EHD film, boundary lubrication may still prevent severe adhesive wear. The transition from the boundary lubricated regime towards the regime of severe adhesive wear is a function of load (normal force), speed and bulk oil temperature and possibly depends on the conjunction temperature. Irrespective of the initial lubrication condition, oxidation of the steel surfaces leads to the (re)establishment of low friction, mild wear conditions.  相似文献   

3.
The influence of surface topography on lubricant film thickness has been investigated for the reciprocating sliding of patterned plane steel surfaces against cylindrical counterbodies under conditions of hydrodynamic lubrication. Patterns of circular depressions, grooves and chevrons were used, and the fractional area coverage, depth, width and sliding orientation relative to the texture were systematically varied. Textured samples with features much larger than the elastic contact width gave film thicknesses, which were smaller than those for non-textured samples. This effect was more significant for larger features. For patterns composed of circular pockets, maximum film thickness was achieved for an area coverage fraction f≈0.11. Chevron patterns pointing along the sliding direction gave higher film thicknesses than those pointing across. For an area coverage ratio of ca. 0.06, maximum film thickness was achieved for a feature depth to width ratio of about 0.07. Among the patterns investigated, chevrons were the most effective and grooves the least effective in increasing hydrodynamic film thickness.  相似文献   

4.
This paper investigates the influence of the applied load and sliding velocity on the microfrictional properties of native oxide-covered Si(100) and Si(100) coated with octadecyltrichlorosilane (OTS) and perfluorodecyltrichlorosilane (FDTS) self-assembled monolayers (SAMs) using a precision microtribometer. Microfriction was investigated as a function of the applied load and sliding velocity. As has been confirmed in earlier studies, in the microtribological regime, OTS and FDTS significantly reduce the friction force in comparison to the bare native oxide-covered (hydrophilic) silicon surface. The friction versus applied load curve of the substrate material as well as the SAMs-covered surfaces can be described by a model based on contact mechanics. For the native oxide surface, microfriction is reduced with increasing sliding speed. The friction force of the OTS- and FDTS-covered surfaces increases with load and is proportional to the natural logarithm of sliding speed. The increase with sliding velocity gets larger for higher normal loads. It can be shown that this increase is proportional to the contact area of the counter sample with the SAMs.  相似文献   

5.
Abstract

Tribological performance of subnano to nanometre thick Ag layers deposited on Si(111) has been examined under ultra high vacuum conditions to understand effect of surface thin layers on the wear and friction characteristics. The slider was made of a diamond sphere 3 mm in radius. As a result, a minimum of the coefficient of friction 0·007 was observed over a film thickness range of 1·5–10 nm. The sliding planes were observed by Auger electron spectroscopy, reflection high energy electron diffraction (RHEED), synchrotron orbital radiated X-ray diffraction (SOR-XD) and scanning tunnelling microscopy (STM). No worn particles were found after 100 reciprocal sliding cycles, and the very low friction coefficient lasted for at least 1000 sliding cycles. Observations using STM on the sliding surfaces confirmed that the stacking Ag(111) planes slid. The SOR-XD and RHEED verified that a tribo-induced orientation of polycrystal film occurs as Ag(111) sliding planes are oriented parallel to the sliding direction on the track. The friction force of as deposited epitaxial Ag films as a function of the load was constant. On the other hand, in the 5 nm thick Ag films annealed to form complete single crystals, the friction coefficient showed a strong load dependency. At a load of 250 mN or more, the annealed films showed a low and static friction coefficient. These results suggested that the shearing resistance of nanometre thick Ag layers exhibits a strong anisotropic performance within the thickness range of nanometres, along with an orientation of Ag during sliding. Experimental results of sliding tests were discussed on the contribution of surface atoms to the friction, an extraordinarily low wear rate of the Ag layers, and the relationship between the nanoscopic structure and macroscopic tribological performance.  相似文献   

6.
V.K. Jain  S. Bahadur 《Wear》1980,60(1):237-248
A wear equation has been derived using the concept of fatigue failure due to asperity interactions in the contact region between sliding bodies. One of the three principal stresses that arise in the contact zone under the effect of a normal as well as a tangential load is of tensile nature. It is this principal stress that has been considered to be responsible for the initiation and propagation of fatigue cracks. It is assumed that the deformation in the contact zone is of elastic nature and that both the contacting surfaces are covered with asperities that have spherical tips. The wear equation involves the asperity height distribution φ(z). The particular distribution for a sliding situation is determined from experimental studies of the topography of sliding surfaces. The wear equation indicates that the wear rate depends upon the fatigue properties of the weaker material, normal load, sliding speed, coefficient of friction, moduli of elasticity of the contacting materials, asperity density, asperity radius of curvature and the distribution and standard deviation of asperity heights. The variation of wear with these parameters as indicated by the wear equation is in agreement with the experimental studies already reported in the literature.  相似文献   

7.
为研究不同的滑移情况对圆柱形凹坑织构滑动轴承摩擦力的影响,建立含有圆柱形凹坑织构的滑动轴承在不同界面滑移状态下的摩擦力计算模型,探究影响织构化滑动轴承摩擦力的参数,并借助ANSYS分析不同滑移情况下界面滑移对圆柱形凹坑织构滑动轴承摩擦力的影响规律。结果表明:织构化滑动轴承的摩擦力主要是由轴颈线速度、油膜滑移比、轴承的进出油口压力、织构处油膜压力、织构深度、油膜厚度和承载力决定;不同滑移情况下织构模型的摩擦力均小于无织构模型;且在上下表面均滑移时,圆柱形凹坑织构在出口位置时表现出最优的承载和减摩效果;适当地增加圆柱形凹坑织构的深度可以改善模型的摩擦性能,但是过深的凹坑织构并不能发挥出其性能。  相似文献   

8.
M.G. El-Sherbiny  F.B. Salem 《Wear》1981,66(1):101-110
A wear model based on the fatigue failure of asperities on ion-plated surfaces is presented. It is suitable for ion-plated hard substrates sliding against hard counterfaces where asperity penetrations do not occur. The constants specific to the analysis are evaluated. A wear equation which is dependent on the mechanical properties of the system, the surface topography and the operating conditions is obtained. The wear rates are expressed as functions of the normal load, the sliding speed, the track width, the standard deviation of the surface asperities, the mean radius of the asperities, the stiffness of the asperities and the static yield strength of the multilayered material.  相似文献   

9.
The shape of an atomic force microscope (AFM) silicon tip has a significant effect on the mechanical modification of the polymer surface, especially for a longer sliding distance of from several to several hundreds of millimeters. In this work, a pyramidal silicon tip was used to cut into the polymethyl methacrylate (PMMA) surface, forming nanogrooves with a linear sliding distance of about 80 mm and wear box structures with a total tip sliding distance of 1,024 mm. The effects of the tip edges and the tip radius on the form of the wear debris chips, wear depth, and debris transferred to the tip were investigated. The experimental results showed that four sides of the tip influenced the morphology of the removed material. Adhesion appeared to play a role in the tip wear mechanism by successive removal of SiO2 layers during transfer of adhered PMMA from the tip to the surface. The tip radius generally increased with sliding distance. Simultaneously, adhesion of the removed materials to the tip induced a larger tip radius and a sharper tip was revealed as dropping off of the materials during the test from time to time. Thus, with the same normal load the worn tip may induce failure of the machining process. The results presented in this study provide insight into long-term nanoscratch/wear and nanomechanical machining of glassy polymer surfaces with a silicon AFM tip.  相似文献   

10.
The scale of surface texture is becoming an important issue of surface texture design, particularly for the condition of low speed and high load. Experiments were carried out to investigate the effect of dimple size on friction under line contact condition. The patterns of dimples distributed as square array were fabricated on the surface of brass disks. Each pattern has the same area density of 7%, the same depth over diameter ratio h/d of 0.03, and dimple diameter d varying from 20 to 60 μm. The frictional tests of the brass disk sliding against a stationary cylindrical surface of bearing roller were conducted. It was found that the pattern with dimple diameter of 20 μm presented the effect of friction reduction. For the further understanding of the effect of dimple size under line contact condition, numerical simulations were also carried out to evaluate the hydrodynamic pressure within the contact of cylindrical and plane surfaces. The effects of dimple size and radius of the cylinder on the load carrying capacity were evaluated and discussed.  相似文献   

11.
Analysis of fluid film formation between contacting compliant solids   总被引:1,自引:0,他引:1  
Industrial compliant surface bearings and dynamic seals sometimes suffer severe damage during start up after long rest, and a similar problem is predicted for joint prostheses with compliant artificial articular cartilage. In this study, fluid film developing between compliant solids by sliding is analyzed numerically using a modified elasto-hydrodynamic lubrication theory which permits direct contact and cavitation. The result shows that the forefront of the fluid film moves in the same direction with sliding while direct contact remains until the fluid film takes the place of the entire contacting region. With an increase of compliance and the Stribeck number, the velocity of fluid film formation increases and approaches half of the sliding speed but never exceeds it. In other words, the minimum sliding distance for non-contacting condition is twice the initial contact width. Therefore, when a heavy load is applied to compliant surface bearings, the contact width will be large and the unlubricated region will remain long. Since a compliant material is not as strong as hard materials, it may be damaged during start up after a long rest. As the study has thus clarified the mechanism of damage which compliant surfaces experience during start up, effective methods to protect surfaces from damage will be found according to the theoretical backgrounds.  相似文献   

12.
13.
It has already been known for many years that the use of some extreme-pressure (EP), antiwear or friction modifier (FM) additives in mineral oils can produce different kind of boundary or chemical reaction films on sliding contact surfaces of some kinds of steel in boundary lubrication conditions. Using a sliding ball-on-disc configuration lubricated with some kinds of EP or FM, the wear scars on the balls can always reach the same limit size at a specified applied load and sliding velocity. From the fact that the limit sizes of wear scars decrease as sliding speed is increased or applied load is decreased, the load carrying ability of a chemical film can be obtained by extrapolating the data to the condition of zero sliding speed and is so defined that if the contact pressure is greater than this load carrying ability, the contact surfaces will continuously be worn; if the contact pressure is smaller than it, no more wear will occur on the surfaces. Based on this load carrying ability, the hydrodynamic effect of sliding pairs can also be identified. Therefore, the limit size of wear scar at specified sliding speed and applied load can also be predicted in a mixed lubrication condition.  相似文献   

14.
Frictional forces are usually measured by detecting spring displacement. To obtain high-resolution measurements of frictional force distributions, a sharp tip and a light load are required. In measuring frictional force on relatively rough surfaces, using very sharp tips (submicron radii), significant stick-slip motions are observed, and continuously varying dynamic frictional forces can not be measured. To measure continuous friction distributions between sharp tips and surfaces with light loads, a new frictional force microscope (FFM) is developed. This FFM has an electromagnet to maintain the tip suspension spring in a non-deflected position. The frictional force is then measured from the magnet current. Using this FFM, continuous friction distributions between 0·1 μm radius diamond tips and magnetic disk surfaces with light loads (less than 10 μN) are obtained.  相似文献   

15.
Water lubricated silicon carbide is expected to be widely used for sliding bearings and mechanical seals in hydraulic systems since it is environmentally friendly and saves energy. The purpose of this study is to find the optimum surface texture to improve the load carrying capacity of SiC bearings working in water. Micro-pits, evenly distributed in a square array, were selected as the texture pattern, and formed on one of the contact surfaces by reactive ion etching. Experiments, which simulate the working condition of thrust bearings, were carried out to evaluate the effects of the micro-pits on the critical load of the transition of the lubrication mode from hydrodynamic to mixed. The results are summarized in the form of a load carrying capacity map. It was found that an optimum geometric and distributive range of micro-pits exists, where the load carrying capacity can be increased at least twice over that of an untextured surface.  相似文献   

16.
工程实际中,由于摩擦力的存在,接触副的运动将导致接触区内产生大量的摩擦热,使接触副温度升高;由此产生的瞬时高温会使接触副更易发生弹塑性变形、引起表层下裂纹的萌生及扩展,甚至使接触副表面发生化学变化。建立了不同滑动速度下干接触体的滑动接触模型,利用快速傅立叶变换,通过求解拉普拉斯热传导方程,获得光滑及粗糙表面接触副的瞬时温升以及接触体内部各离散点的温度分布,即半无限体干接触的温度场。结果表明,相同载荷及摩擦因数条件下,相对滑动速度对接触体的温升及其温度分布有重要影响;粗糙峰表面接触处的瞬时温升远高于光滑表面接触处的瞬时温升。  相似文献   

17.
In hydrodynamic lubrication theory, the oil film thickness build‐up increases with increasing sliding speed or oil viscosity, and the viscous resistance or shear stress also increases, both without limit. The entraining force forming the oil film is given by the moving surfaces, or by the adhesive force of the oil molecules on the rubbing surfaces and the interaction force between them. Therefore, the maximum friction force and maximum oil film thickness will be limited by the operating conditions, such as oil properties, rubbing materials, sliding speed, and load. In this study, friction tests were conducted using a plate‐on‐cylinder sliding contact apparatus. It was found that a critical shear stress existed, above which the friction force and oil thickness decreased from theoretical values. Slip in an oil film seems to occur when the theoretical shear stress exceeds the critical value of the oil, according to test conditions. The occurrence of slip in an oil film is responsible for the reduction in the oil film and friction force from theoretical values, leading to the lower‐viscosity components of the oil selectively passing through the conjunction zone.  相似文献   

18.
The surface topography of the human wrist skin is studied using an optical method and the surface roughness power spectrum is obtained. The Persson contact mechanics theory is used to calculate the contact area for different magnifications, for both dry and wet condition of the skin. For dry skin, plastic yielding becomes important and will determine the area of contact observed at the highest magnification. The measured friction coefficient [M.J. Adams et al., Tribol Lett 26:239, 2007] on both dry and wet skin can be explained assuming that a frictional shear stress σf ≈ 15 MPa acts in the area of real contact during sliding. This frictional shear stress is typical for sliding on polymer surfaces, and for thin (nanometer) confined fluid films. The big increase in the friction, which has been observed for glass sliding on wet skin as the skin dries up, can be explained as resulting from the increase in the contact area arising from the attraction of capillary bridges. This effect is predicted to operate as long as the water layer is thinner than ~14 μm, which is in good agreement with the time period (of order 100 s) over which the enhanced friction is observed (it takes about 100 s for ~14 μm water to evaporate at 50% relative humidity and at room temperature). We calculate the dependency of the sliding friction coefficient on the sliding speed on lubricated surfaces (Stribeck curve). We show that sliding of a sphere and of a cylinder gives very similar results if the radius and load on the sphere and cylinder are appropriately related. When applied to skin the calculated Stribeck curve is in good agreement with experiment, except that the curve is shifted by one velocity-decade to higher velocities than observed experimentally. We explain this by the role of the skin and underlying tissues viscoelasticity on the contact mechanics.  相似文献   

19.
A dynamic electrical pitting tester has been developed to investigate the effects of supply voltage, supply current, and oil film thickness on the electrical behavior, the normal and frictional forces, and the formation mechanism of electric damage for the sliding lubricated contacts of steel pair under DC electric field. Based on the experimental results for the normal and frictional forces, and the observations of the pitted surface, the process by which electrical damage occurs on the sliding lubricated surfaces is deduced. In this process, the molten metals are attracted to each other, leading to the formation of a molten metal column, which becomes a semisolid metal column due to the cooling action of the oil film. The normal force is significantly affected by this semisolid column, which grows and pushes against the lubricated contacts. Results also show that the frictional force primarily comes from the electrostriction force. The correlation formula for the damage width in terms of supply voltage, supply current, and oil film thickness is derived, but the supply current is the most important parameter affecting the width of the electric damage.  相似文献   

20.
The frictional properties of a thin hexadecane film confined between two atomically smooth surfaces of mica were studied using the surface forces apparatus equipped with a 3D actuator–sensor attachment specially designed to investigate static and dynamic forces in three orthogonal directions simultaneously. The use of this attachment allows the relative alignment of the reciprocal sliding motion to be changed by an angle of 90° while maintaining the film under the same confinement conditions. The effects of the commensurability of the confining mica surfaces as well as the relative sliding direction on the frictional behavior of the hexadecane film were determined for different temperatures (18–29 °C) and sliding velocities (4 nm/s to 4 μm/s). The confined hexadecane film exhibited smooth sliding friction whose amplitude increased with the commensuration of the surfaces. A progressive evolution in the kinetic friction force toward a steady-state value was observed over reciprocal sliding motion for given experimental conditions of applied load, sliding velocity and environmental temperature. This friction evolution shows to be dependent on the sliding history of the film and could result from a partial molecular ordering, occurring during shear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号