首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Abstract

In this study, the physical system under consideration is a three-dimensional (3D) cabinet with arrays of heat-generating blocks mounted on inner surface of back wall of the cabinet. The heat-generating blocks dissipate heat to the surrounding of cabinet through conjugate conduction and natural convection. Efforts are performed to investigate the cooling performance enhancement of the blocks by constructing circular air vents in walls and installing round fins onto back wall of the cabinet. Results show that the air vents and fins can significantly reduce the hot spot temperature of heat-generating blocks, and improve temperature uniformity of the blocks. The maximum reduction in hot spot temperature can be up to 26.2% for cases under investigation in this study.  相似文献   

2.
In the present work, the effect of channel cross section on the heat transfer performance of an oblique finned micro-channel heat sink was investigated. Water and Al2O3/water nanofluid of volume fraction 0.25% were used as a coolant. The oblique finned microchannels are designed with three channel cross-sections namely square, semicircle and trapezoidal. The primary work of this paper is to study the heat transfer and hydrodynamic characteristics in the oblique finned microchannel. The experimental setup and procedure are validated using water as coolant in a micro-channel heat sink. Heat transfer and flow characteristics are examined for three cross-sections of varying mass flux. The trapezoidal channel cross-section increases the considerable heat transfer rate improvement for both water and nanofluid by 3.133% and 5.878% compared to square and semicircle cross section. Also, the pressure drop is higher in the trapezoidal cross-section over the square and semicircle cross section. This is due to increase in friction loss of trapezoidal cross section. The results indicate that trapezoidal cross-section oblique finned micro-channel is more suitable for heat transfer in the electronic cooling application.  相似文献   

3.
This study was performed for simulating frosting characteristics that occurred on the surface of plate fins of the outside heat exchanger. Test section with local cooling modules at the central part was made as the rectangular cross sectional passage to imitate the outside heat exchanger. Local frost thickness distributions for test conditions having three experimental parameters (plate wall temperature, air humidity and velocity) were presented. Leading edge effect of the plate was clearly confirmed from the measured frost thickness distributions. The central part of the plate had the highest frost thickness because cooling devices were installed at the center of the plate. Due to different heat and mass transfer characteristics of upstream flow and downstream flow, the frost thickness of upstream area was much higher than that of downstream. The effects of plate surface temperature, humidity and velocity of inlet flow on frost thickness, and sensible and latent heat fluxes were analyzed.  相似文献   

4.
A numerical approach is carried out to investigate the heat transfer performance of in-plane spiral ducts with various cross sections – rectangular, square, triangular, trapezoidal, circular and half circular. Simulations were carried out at a constant inlet Reynolds number at fixed cross section area for both constant wall temperature and constant wall heat flux conditions. Results are compared to straight ducts of the same cross sections and at the same length as the coiled ducts. The effects of Reynolds number and Prandtl number are also discussed for various geometries. The results are presented and are aimed to determine the advantages, limitations and effects of in-plane spiral ducts of various cross sections on the flow and heat transfer characteristics when the cross section area is fixed.  相似文献   

5.
This study explores heat diffusion effects in micro-channel heat sinks intended for electronic cooling applications. Detailed analytical models are constructed for heat sinks having micro-channels with rectangular, inverse trapezoidal, triangular, trapezoidal, and diamond-shaped cross sections. Solutions are presented for both monolithic heat sinks and heat sinks with perfectly insulating cover plates. The analytical results are compared to detailed two-dimensional numerical models of the same cross-sections over a broad range of cover plate thermal conductivities for different micro-channel aspect ratios, fin spacings and Biot numbers. These comparisons show the analytical models provide accurate predictions for Biot numbers of practical interest. This study proves the analytical models are very effective tools for the design and thermal resistance prediction of micro-channel heat sinks found in electronic cooling applications.  相似文献   

6.
Abstract

Two types of novel trapezoidal battery modules with taper angles of 60° and 90° are proposed. Flow and heat transfer characteristics of the battery modules are investigated numerically and compared with rectangular battery module. Results show that acceleration of fluid, cell arrangement, and gap spacing are three main factors influencing the velocity and temperature distribution in trapezoidal battery modules. Combination of water cooling and trapezoidal battery module with taper angle of 60° is an optimal choice, and the maximum cell temperature difference can be decreased as high as 27% as compared to that of traditional rectangular battery module.  相似文献   

7.
To enhance and suppress ice formation around isothermally cooled cylinders in convective water flow, circular fins and heat conductor plates are used, respectively. The heat conductor plates are positioned around each cylinder with some clearance. In the present experiment, the cooled cylinders had a staggered alignment. The experimental results show that the present analytical method for cooled cylinders with fins and heat conductor plates is useful for predicting ice volume under the conditons in which the cooled cylinders are not completely linked by ice in a steady-state condition. It is found that ice accumulation with fins is significantly enhanced compared to that without fins. It is also shown that use of cylinders with the heat conductor plates is effective for suppression of ice formation. © 1998 Scripta Technica, Heat Trans Jpn Res, 26(7): 419–434, 1997  相似文献   

8.
Open-cathode air-breathing fuel cells have the advantage of reduced system complexity and simplified operation, as oxygen is taken directly from ambient air without the need for blowers/compressors. In this study, printed circuit boards (PCBs) are used as flow-field plates. The use of PCBs offers the potential for significant cost reduction due to their well-established manufacturing processing and low materials cost. This study investigates the effect of varying the cathode geometry (parallel and circular) and opening ratios (43%, 53% and 63%) on fuel cell performance using polarisation curves, electrochemical impedance spectroscopy (EIS) and thermal imaging. The results obtained indicate that circular openings afford lower Ohmic resistance than parallel flow-field designs, which helps improve contact between the gas diffusion layer and flow-field plate. However, flow-field plates with circular openings suffer from greater mass transport limitation effects. Likewise, greater opening ratios offer better mass transport but increased Ohmic resistance as a result of the reduced area of lands/ribs. The thermal imaging results reveal lower temperature in the middle of the fuel cell due to “bowing” of the printed circuit board flow field plates which reduces the local current density. A trade-off between these factors results in a design with a maximum area specific power density of 250 mW cm−2.  相似文献   

9.
Fin material near the tip of a uniform cross sectional (UC) fin does not participate actively in transferring heat. This effect may seem to have progressed much with the increase in fin length. A uniform cross sectional fin with a step reduction in local cross section (SRC) not only increases the effective utilization of fin material near the tip but also it promotes the ease of fabrication. In this study, an effort has been devoted to determine analytically the overall fin performance of both longitudinal and pin fins of SRC profile under fully dry, partially wet and fully wet conditions. The effect of various design and psychometric parameters on the fin performance of SRC fins has been investigated and compared it is with the corresponding UC fin. A scheme for optimizing SRC fins has also been demonstrated in the present work. From the result, it can be highlighted that the optimum values of Biot number and aspect ratio of SRC fins increase with the increase in relative humidity for the same fin volume. In comparison with the UC fin for the identical fin volume, the SRC fin transfers more rate of heat and consequently, this difference in heat transfer rate increases slowly with the relative humidity.  相似文献   

10.
Hydrogen absorption by ~5 kg LaNi5 in a metal hydride reactor is simulated. A cylindrical reactor (OD 88.9 mm, Sch- 40s, SS 316) with internal conical copper fins and cooling tubes (1/4, SS 316) carrying water at 1 m s−1 and 293 K (inlet) is considered. Designs with 10, 13 and 19 equi-spaced fins and 2, 4 and 6 cooling tubes are explored. Hydrogen (15 atm) is supplied through a coaxial metal filter (OD 12 mm, SS 316). Conical fins offer enhanced heat transfer through higher surface area and funnelling effect for efficient loading of metal hydride powder. 19 fins + 6 tubes design requires 290 and 375 s for 80% and 90% hydrogen saturation level, respectively. The fins near the water inlet regions are more effective as the water temperature is lower in these regions. Trade-off exists between times taken for saturation and the mass of metal hydride.  相似文献   

11.
This work characterizes the thermal management of a proton exchange membrane fuel cell (PEMFC) stack with combined passive and active cooling. A 10-cell PEMFC stack with an active area of 100 cm2 for each cell is constructed. Six thermally conductive 0.1-mm-thick Pyrolytic Graphite Sheets (PGSs) are cut into the shape of flow channels and bound to the six central cathode gas channel plates. These PGSs, which are lightweight and have high thermal conductivity, function as heat spreaders and fins and provide passive cooling in the fuel cell stack, along with two small fans for forced convection. Three other cooling configurations with differently sized fans are also tested for comparisons (without PGSs). Although the maximum power generated by the stack with the configuration combining PGSs and fans was 183 W, not the highest among all configurations, it significantly reduced the volume, weight, and cooling power of the thermal management system. Net power, specific power, volumetric power density, and back work ratio of this novel thermal management method are 179 W, 18.54 W kg−1, 38.9 kW m−3, and 2.1%, respectively, which are superior to those of the other three cooling configurations with fans.  相似文献   

12.
In this paper, the pressure drop and heat transfer features of a microchannel applying micropin fins are investigated by numerical simulations and experiments. The microchannel, which is 20-mm long, 2.7-mm wide, and 0.3-mm deep, is fabricated with copper and consisted of staggered diamond micropin fins. The visualization experiments, by means of the advanced technology micro-particle image velocimetry (PIV), are conducted to discuss the mechanism of heat transfer by analysing the flow regimes. Meanwhile, 3D-coupled numerical simulations are applied for the combination with experiments in this research. It is found that the vortex-wake flow is stable at Reynolds number (Re) = 0 to 300, and a steady recirculating zone can be observed in the wake, where a pair of symmetrical vortices is formed. All the time, the vortex-wake flow is unstable at Re = 300 to 650. Under this situation, it is due to the decrease of vorticity that the Nusselt number (Nu) is not significantly increased as it was expected. Thus, when Nu in the pin fin microchannel is predicted, the vorticity should be considered as well as turbulent kinetic energy (TKE). Furthermore, comparative study was carried out based on the mechanism proposed in this study among three kinds of microchannel with different fins, including staggered circular pin fins (CPF), square pin fins (SPF), and diamond pin fins (DPF).  相似文献   

13.
Abstract

The effects of thermal aging and step cooling embrittlement on the impact toughness of a reactor pressure vessel steel SA533B quenched and tempered (QT) with and without post-weld heat treatment (PWHT) have been studied. Charpy impact testings were conducted on the aged plates at 350°C for 5000 h to evaluate whether the embrittlement was induced by step cooling heat treatment. The results show that thermal aging increases the ductile–brittle transition temperature in both QT and PWHT states but dramatically decreases the upper shelf energy in QT state and has less effects on the PWHT state. By comparing the correlation between thermal aging embrittlement and step cooling embrittlement for both QT and PWHT states in steel, it is found that the step cooling heat treatment can obviously promote further embrittlement of the base metal in QT state but has little influence on the impact toughness in PWHT and thermal aged state. Further analysis indicates that the step cooling heat treatment cannot promote steel embrittlement at some heat treatment states. Finally, a new method is proposed to evaluate the degree of step cooling embrittlement of the pressure vessel steel.  相似文献   

14.
Abstract

We analyze thermal buckling of both circular isotropic plates and square antisymmetric angle-ply laminates with a hole in the middle, and subject to a uniform temperature rise, by either closed form solution for the former or finite-element method for the latter. Thin-plate theory is used to analyze the isotropic plates. However, a high-order displacement theory including high-order terms along the transverse direction taking into account transverse normal strain is used in the case of laminates. Results for the isotropic plates indicate that in contrast to the reduction in mechanical buckling loads due to the hole, the thermal buckling temperature actually rises as the size of the hole increases, which indicates that the effect on stress reduction exceeds that on stiffness decrease. Results are more complicated for laminated plates, due to anisotropy.  相似文献   

15.
This paper reports the heat transfer enhancement and corresponding pressure drop over a flat surface equipped with circular cross section perforated pin fins in a rectangular channel. The channel had a cross section area of 100–250 mm2. The experiments covered the following ranges: Reynolds number 13500–42,000, clearance ratio (C/H) 0, 0.33 and 1 and interfin spacing ratio (Sy/D) 1.208, 1.524, 1.944 and 3.417. Correlation equations were developed for the heat transfer, friction factor and enhancement efficiency. The experimental results showed that the use of circular cross section pin fins may lead to heat transfer enhancement. Enhancement efficiencies varied between 1.4 and 2.6 depending on clearance ratio and interfin spacing ratio. Using a Taguchi experimental design method, optimum design parameters and their levels were investigated. Nusselt number and friction factor were considered as performance parameters. An L9(33) orthogonal array was selected as an experimental plan. First of all, each goal was optimized separately. Then, all the goals were optimized together, considering the priority of the goals, and the optimum results were found to be Reynolds number of 42,000, fin height of 50 mm and streamwise distance between fins of 51 mm.  相似文献   

16.
The objective of the present work is to optimize, by means of constructal design associated with exhaustive search and genetic algorithm, the geometry of morphing T-shaped fins that remove heat from a semicircular basement. The fins are bathed by a steady stream with constant ambient temperature and convective heat transfer. The semicircular body that serves as a basement for the T-shaped construct generates heat uniformly and it is perfectly insulated on the outer perimeter. It is shown numerically that the global thermal resistance can be minimized by geometric optimization subjected to constraints, namely, the basement area constraint, the T-shaped fins area fraction constraint and the auxiliary area fraction constraint, i.e. the ratio between the area that circumscribes the T-shaped fin and the basement area. The combination of the degrees of freedom values in the context of constructal design generated a search space with several “potential” local minima so that the classic technique, i.e. the exhaustive search, had to be substituted by the genetic algorithm method. In this context, the initial investigation regarding the degrees of freedom L1/L0 and t1/t0 was performed by means of the exhaustive search, while the parameters kp, ϕ, λ and ψ have been studied by employing GA technique. First achieved results indicate that when the geometry is free to morph then the thermal performance is improved according to the constructal principle named by Bejan “optimal distribution of imperfections”. Finally, a comparative analysis between T-shaped constructs coupled with rectangular, trapezoidal and semicircular geometries has been carried out in terms of effectiveness in heat removal. The performance of the T-shaped morphing fin having semicircular basement (the case here treated) proved to be considerably superior than the other tested geometries.  相似文献   

17.
ABSTRACT

In this paper, flow and heat transfer of a swirl chamber that models an internal cooling passage for a gas turbine airfoil leading edge is studied with numerical simulation. The geometry consists of a circular pipe, and rectangular section inlets that lead inlet flow to impinge tangentially on the circular pipe. The effects of the ratio of jet spacing to swirl chamber radius and Reynolds numbers on swirl cooling performance are investigated. The results indicate how the pressure loss and globally averaged Nusselt number on the swirl chamber wall increase with increases of Reynolds number and the ratio of jet spacing to swirl chamber radius. A Nusselt number correlation on these parameters is suggested. Also shown is how Nusselt numbers on the swirl chamber surface increase with the ratio of jet spacing to swirl chamber radius.  相似文献   

18.
This work assesses the performance of plate-fin heat sinks in a cross flow. The effects of the Reynolds number of the cooling air, the fin height and the fin width on the thermal resistance and the pressure drop of heat sinks are considered. Experimental results indicate that increasing the Reynolds number can reduce the thermal resistance of the heat sink. However, the reduction of the thermal resistance tends to become smaller as the Reynolds number increases. Additionally, enhancement of heat transfer by the heat sink is limited when the Reynolds number reaches a particular value. Therefore, a preferred Reynolds number can be chosen to reduce the pumping power. For a given fin width, the thermal performance of the heat sink with the highest fins exceeds that of the others, because the former has the largest heat transfer area. For a given fin height, the optimal fin width in terms of thermal performance increases with Reynolds number. As the fins become wider, the flow passages in the heat sink become constricted. As the fins become narrower, the heat transfer area of the heat sink declines. Both conditions reduce the heat transfer of the heat sink. Furthermore, different fin widths are required at different Reynolds numbers to minimize the thermal resistance.  相似文献   

19.
A parametric investigation is carried out on the effects of temperature-dependent viscosity and viscous dissipation in simultaneously developing laminar flows of liquids in straight microchannels of constant cross sections. Reference is made to fluid heating conditions with a uniform heat flux imposed on the walls of the microchannels. Six different cross sectional geometries are considered, chosen among those usually adopted for microchannels (circular, flat, square, rectangular, trapezoidal, and hexagonal). Viscosity is assumed to vary with temperature according to an exponential relation, while the other fluid properties are held constant. A finite-element procedure is employed for the solution of the parabolized momentum and energy equations. Due to the high value of the ratio between the length and the hydraulic diameter in microchannels, such an approach is very advantageous with respect to the one based on the steady-state solution of the elliptic form of the governing equations in a three-dimensional domain corresponding to the whole microchannel. Computed axial distributions of the local Nusselt number and of the apparent Fanning friction factor are presented. Numerical results confirm that, in the laminar forced convection in the entrance region of straight microchannels, the effects of temperature-dependent viscosity and viscous dissipation cannot be neglected in a wide range of operative conditions.  相似文献   

20.
Enhancing the cooling process of water in a cool-thermal storage system is investigated in this paper. The system is utilized to cool air during on-peak power consumption hours to save energy. The system consists of parallel plates filled with water and triangular corrugated fins. A finite element model for the system is used to predict the cooling time of water for different water's initial temperatures, and also to study the effect of fins design on the cooling process. The result indicates that the aspect ratio of the triangular fin has a significant effect the cooling process of water, and cooling rate increases for the aspect ratio greater or less than 0.75. Temperature contours, average water temperature, and Nusselt number are presented for the cooling process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号