首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The index of refraction is an important property of optical fibers, since it directly affects the bandwidth and optical loss during information transmission. The refractive index is governed by the dopant concentration distribution across the fiber cross section, which is strongly influenced by the processing conditions. An understanding of the effects of process parameters on the dopant concentration profile evolution is important to design the drawing process for tailored refractive index and optical transmission characteristics. Although the heat and momentum transport in optical fiber drawing have been studied extensively, little has been reported in the open literature on dopant concentration and index of refraction profile development during processing. This paper presents a two-dimensional numerical analysis on the flow, heat and mass transfer phenomena involved in the drawing and cooling process of glass optical fibers using a finite difference approach based on primitive variables. The effects of several important parameters are investigated in terms of nondimensional groups, including: fiber draw speed, inert gas velocity, furnace dimensions, gas properties, and dopant properties on the flow, temperature and dopant concentration distribution.  相似文献   

2.
In this study, the three-dimensional flow, heat and mass transfer characteristics in a horizontal chemical vapor deposition (CVD) reactor with a tilted susceptor are analyzed numerically. As the physical domain for the CVD reactor has an irregular region, the Cartesian coordinates are transformed into a general curvilinear coordinate system. For calculating the governing equations, the SIMPLE algorithm is extended and modified to employ the curvilinear system. From the above modeling, the effects of flow rate and tilt angle of suscept on the uniformity and growth rate of reactant gas at the susceptor are investigated. The results show that the existence of return flows leads locally to the improvement of heat transfer, but it is not good for the uniformity of the susceptor. As the tilt angle of the susceptor is increased (from 0° to 9°), the amount of heat transfer and growth rate are improved irrespective of Reynolds number.© 1999 Scripta Technica, Heat Trans Asian Res, 28(6): 474–483, 1999  相似文献   

3.
Vaporization of gas oil droplets has significant effects on the gas-solid flow hydrodynamic and heat transfer characteristic. A three dimensional CFD model of the riser section of a CFB have been developed considering three phase flow hydrodynamic, heat transfer and evaporation of the feed droplets. Several experiments were performed in order to obtain the data needed to evaluate the model using a pilot scale CFB unit. The Eulerian approach was used to model both gas and catalyst particle phases comprising of continuity, momentum, heat transfer and species equations as well as an equation for solid phase granular temperature. The flow field and evaporating liquid droplet characteristics were modeled using the Lagrangian approach. The catalyst particle velocity and volume fraction were measured using a fiber optic probe. The comparison between model predictions of catalyst particle velocity and volume fraction with the experimental data indicated that they were in good agreements and the Syamlal-O'Brien was the most accurate drag equation. The CFD model was capable of predicting the main characteristic of the complex gas-solids flow hydrodynamic and heat transfer, including the cluster formation of the catalyst particles near the reactor wall. In addition, the simulation results showed droplet vaporization caused reduction of catalyst particle residence time. Moreover, the higher ratios of the feed to catalyst flow rates led to the lower values of the catalyst temperature profile minimum.  相似文献   

4.
The reaction between metal hydride (MH) and hydrogen gas generates substantial amount of heat. It must be removed rapidly to sustain the reaction in the metal hydride hydrogen storage reactor. Previous studies indicate that the performance of the reactor can be improved by inserting an efficient heat exchanger design inside the metal hydride bed. In the present study, a cylindrical shaped metal hydride system containing LaNi5, integrated with a finned tube heat exchanger assembly made of copper pin fins and tubes, is presented. A 3-D numerical model is formulated in COMSOL Multiphysics 4.4 to study the transient behavior of sorption process inside the reactor. Experimental data obtained from the literature is used to approve the legitimacy of the proposed model. Influence of various operating and geometric parameters on the total absorption time of the reactor has been investigated. It is found that hydrogen supply pressure is the most influencing factor to increase the absorption rate of hydrogen. Total absorption time of the reactor is found to be 636 s with maximum storage capacity of 1.4 wt% at the operating conditions of 15 bar H2 gas supply pressure, heat transfer fluid temperature of 298 K and flow rate of 6.75 l/min.  相似文献   

5.
Modeling study is conducted to reveal the heat transfer and flow features of the thermal plasma reactor with a counter-flow gas injection and used for nano-particle synthesis. The modeling results show that a variety of parameters, such as the temperature and flow rate of the carrier gas, the operation conditions of the plasma torch, the distance between the plasma torch exit and the carrier-gas injector exit, the swirling of the plasma jet or the carrier gas, etc., can all affect appreciably the temperature and flow fields and the locations of the stagnation layers formed in the plasma reactor. An appropriate combination of the operation parameters of the reactor is thus required in order to obtain a suitable stagnation layer for the synthesis of nano-scale particles.  相似文献   

6.
The three-dimensional flow, heat, and mass transfer characteristics in a horizontal chemical vapor deposition (CVD) reactor with a tilted susceptor are analyzed numerically. As the physical domain for the CVD reactor has an irregular region, the Cartesian coordinates are transformed into a general curvilinear coordinate system. For calculating the governing equations, the finite volume method (FVM) is adopted and the SIMPLE algorithm is extended and modified to employ the curvilinear system. The effects of flow rate and tilted angle of the susceptor on the transport phenomena (i.e., heat transfer rate, uniformity and growth rate of reactant gas, etc.) at the susceptor are investigated. The results show that the existence of return flows leads locally to improvement of the heat transfer, but it is not good for the uniformity of the deposition. As the tilted angle of the susceptor is increased (from 0o to 9o), the amount of heat transfer and growth rate in the main flow direction are improved irrespective of the Reynolds number. The growth rate and uniformity are less sensitive to the inclined angle of the susceptor than that of the Reynolds number.  相似文献   

7.
Solar thermal cracking of natural gas is a promising technology, which has attracted researchers in recent years for its potential to lead to the development of CO2 free hydrogen production process. However, experimental access to the reaction chamber of solar cracking reactors is a challenge due to the high temperature process as the instruments capable of measuring fluid flow cannot survive the medium inside the reactor. However, computational fluid dynamics (CFD) can provide an insight into the flow, where experimental access is limited or not possible. This paper presents a CFD analysis for directly irradiated solar thermochemical reactor to characterize the influence of flow behavior on the heat transfer and solar cracking process. The heat transfer by radiation from carbon particles is considered by providing global absorption and scattering coefficients in the computational domain obtained from Mie code. The flow field is based on RNG k? model derived using renormalization group theory. This technique accounts for the effect of swirl on turbulence thereby enhancing accuracy for the swirl flows. Validation of the numerical results is carried out by making a comparison with the experimental results. Highlighting the effects of carving on the solar reactor walls, this study presents numerical analyses of solar reactor geometry for two cases; namely, when there is no vortex forming carving in the cavity, and when there is vortex forming helical carving. The results show that carving has significant influence on the flow behavior, however, it has very little effect on the outlet temperature. The numerical results also show that the radiative heat transfer mechanism is the dominant means of heat transfer compared to the effects of conduction and convection.  相似文献   

8.
This paper deals with a two-dimensional model of a preferential oxidation (PROX) reactor to be used in a beta 5 kWe hydrogen generator, named HYGen II, to integrate with polymer electrolyte fuel cells (PEFCs) for residential applications. The reactor geometrical configuration developed is a single-stage multi-tube configuration, in which a cocurrent air flow in the interspace is aimed at improving heat transfer and consequently controlling the temperature of the reactor. The aim of the model is to investigate the process performance of the reactor in order to enhance optimization and control of the PROX unit. The model concerns chemical kinetics and heat and mass transfer phenomena in the reactor. The model plays a key role in overcoming the issues of system design, by evaluating the temperature and the gas concentration profiles in the reactor. The CO removal from simulated reformate was examined with varying inlet temperature. Simulation results showed the strong dependence of the overall performance upon the reactor geometrical configuration.  相似文献   

9.
Departures of radiant heating rates from predictions based upon the well-storred chamber model are obtained with a nongray, nonlinear analysis of radiant heat transfer in a turblent molecular gas Reynolds number is used to characterize the turbulence, and a radiation-molecular conductopm ratio and maximum optical depth characterize the gas properties. Results are obtained for wall to gas temperature ratios from 0.235 deoth characterize the gas properties. results are obtained average temperature ratios are presented. A sample calculation illustrates the effect of self-absorption on radiative transfer and reactor temperature.  相似文献   

10.
Two-step thermochemical water splitting (TWS) is a promising carbon-free/low-carbon technology for producing hydrogen in a mass production scale, in which water is dissociated in the presence of metal oxide-based catalysts via redox cycles driven by thermal energy. While active research is underway to develop high-performance metal oxide catalysts, less attention has been paid to reactor design and relevant system analysis, which are essential for constructing an actual system. The gas and solid flow configuration is one of the key design parameters in reactor design that determines thermodynamic and kinetic characteristics of the entire two-step TWS system. In this study, we propose a rotating fluidized bed reactor design wherein the rotating current flow configuration allows a much larger relative velocity between sweep gas and redox particles compared to conventional flow configurations. The rotating current flow configuration significantly improves the temperature ramp rate of redox particles via enhanced heat transfer between particles and sweep gas. Through thermodynamic and kinetics analysis of the reactor system, we show that the large temperature ramp rate of the proposed reactor results in a considerable improvement in the hydrogen yield per hour. This work adds a new dimension to the reactor design for two-step TWS.  相似文献   

11.
In the present paper, a theoretical model is studied on the flow in the liquid annular film, which is ejected from a vessel with relatively higher temperature and painted on the moving solid fiber. A temperature gradient, driving a thermocapillary flow, is formed on the free surface because of the heat transfer from the liquid with relatively higher temperature to the environmental gas with relatively lower temperature. The thermocapillary flow may change the radii profile of the liquid film. This process analyzed is based on the approximations of lubrication theory and perturbation theory, and the equation of the liquid layer radii and the process of thermal hydrodynamics in the liquid layer are solved for a temperature distribution on the solid fiber.  相似文献   

12.
A one-dimensional, nonisothermal model is developed to describe the thermal dissociation of methane to hydrogen and carbon black occurring in a fluid-wall aerosol flow reactor. The model expressions are scaled and nondimensionalized to determine the minimum parametric representation of the system. The sensitivity of this thermal dissociation to three parameters (flow rate of carbon particles fed to initiate the reaction, carbon particle radius, and reactor wall temperature) is studied. The results of the study indicate that in order to achieve nearly complete conversion, high reactor wall temperatures must be maintained. In addition, micron-sized carbon black particles must be fed into the reactor to enhance the heat transfer to the gas phase. The actual flow rate of particles fed is not critical, as long as some flow rate of fine particles is maintained.  相似文献   

13.
波纹管降膜蒸发器传热性能数值模拟   总被引:1,自引:0,他引:1  
黄坤  刘振义  宋继田  李丁  张宝堃 《节能技术》2009,27(5):407-410,440
为了理解波纹管降膜蒸发过程中涉及的液膜传热过程,本文采用VOF法建立了二维气-液两相分层流动CFD模型,考虑了液相流量,传热温差,蒸发温度,液相粘度等参数对传热效果的影响,根据模拟结果给出了波纹管降膜蒸发器的流量可操作范围。模拟结果和实验数据比较吻合。  相似文献   

14.
The use of wide-band or gray-gas models in coupled heat transfer calculations frequently leads to significant errors due to spectral correlations between the emitted flux intensity and gas transmissivity. In the present study, the random statistical narrow-band model with the exponential-tailed-inverse distribution and the Curtis-Godson approximation are used with a 25cm−1 spectral resolution; our parameters are generated from a line-by-line calculation. Coupled dynamic and energy equations are solved for an emitting and absorbing laminar gas flow between two parallel walls at fixed temperature. The influence of radiative and thermophysical property variations with temperature is analysed for H2O-air mixtures under strong temperature gradients. A large range of optical thickness is studied. Different temperature and heat flux profiles are found when the walls are heated or cooled. Finally, results obtained with the statistical narrow-band model and the exponential wide-band model are compared.  相似文献   

15.
非能动余热排出系统是核电站堆芯安全性的重要保障,为优化钠冷堆余热排出系统的热工设计方法,明确环境温度及空气冷却器结构变化对余热排出系统的影响。在考虑拔风烟囱自然循环影响的情况下建立完整的钠冷堆非能动传热模型,得到通用的余热排出系统通风量方程,并基于流动平衡和能量平衡对一定设计传热量的余热排出系统进行流程优化并分析环境温度、烟囱高度及翅高变化对系统热力参数的影响规律。结果显示,系统的总驱动压和总传热系数随着环境温度升高逐渐减小,且环境温度对驱动压力的影响更为明显;拔风烟囱高度增加,系统总驱动压和总传热系数均增大,且增大趋势不断变缓,存在设计最优值;翅片管翅片高度减小,系统总传热系数及单位压降传热系数大幅增加,对系统的传热性能影响明显。  相似文献   

16.
In hybrid fuel cell systems, the fuel-lean anode-off gas is very useful to improve the system efficiency via additional power generation or utilization of thermal energy for heating up of auxiliary devices. In this study, the thermal energy of the hybrid systems is firstly utilized in homogeneous charge combustion engine for additional power and is then supplied to heat up the external reformer. Different from other hybrid fuel cell systems, it is very difficult to utilize heat energy of exhausted gas from engine due to its low temperature characteristics. This study is concentrated on the computation analysis of external methane steam reformers with engine out exhausted gases. Computational model is validated with experiment and parametric study is conducted. Results show that the temperature uniformity of the longitudinal and radial directions is crucial for the methane conversion efficiency. Additionally, the methane conversion rate also depends on the performance of tube-side heat transfer. When the total methane flow is fixed, the methane conversion rate shows trade-off with increasing steam-to-carbon ratio (SCR). Finally, the sensitivity study shows that heat transfer area and reactor length are dominant parameters for steam reforming with engine out exhausted gases.  相似文献   

17.
Convection heat transfer in pulsating turbulent flow with large velocity oscillating amplitudes in a pipe at constant wall temperature is numerically studied. A low-Reynolds-number (LRN) kε turbulent model is used in the turbulence modeling. The model analysis indicates that Womersley number is a very important parameter in the study of pulsating flow and heat transfer. Flow and heat transfer in a wide range of process parameters are investigated to reveal the velocity and temperature characteristics of the flow. The numerical calculation results show that in a pulsating turbulent flow there is an optimum Womersley number at which heat transfer is maximally enhanced. Both larger amplitude of velocity oscillation and flow reversal in the pulsating turbulent flow also greatly promote the heat transfer enhancement.  相似文献   

18.
In order to analyse the sensitivity on pulverized coal flames of variables such as initial turbulent intensity, steam addition, primary/secondary momentum ratio, and radiation heat transfer, a numerical study was conducted at the gasification process. Eulerian approach is used for the gas phase, whereas Lagrangian approach is used for the solid phase. Turbulence is modeled using the standard kϵ model. The turbulent combustion model incorporates the eddy dissipation model. The radiation heat transfer is solved using a Monte‐Carlo method. One‐step two‐reaction model is employed for the devolatilization of a Kideco coal. In pulverized flame of long liftoff height, the initial turbulent intensity is an important factor to predict the accurate flame front position. The radiation heat transfer and wall heat loss ratio distort the temperature distributions along the reactor wall, but do not affect the reactor performance such as coal burnout, residence time and flame front position. The primary/secondary momentum ratio only affects the position of flame front, but the coal burnout is slightly influenced. It is confirmed that the momentum ratio is a variable only associated with the flame stabilization. The addition of steam in the reactor has a detrimental effect on all the aspects, particularly in reactor temperature and coal burnout. The increase of liftoff height and dropped gas temperature mean the harm of flame stabilization in the reactor, and so the gasification reaction may be deactivated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
A model of heat transfer during gas hydrate formation at a gas-liquid interface in gas-liquid slug flow with liquid plugs containing small bubbles is suggested. Under the assumption of perfect mixing of liquid in liquid plugs, recurrent relations for temperature in the n-th liquid plug and heat and mass fluxes from the n-th unit cell in a gas-liquid slug flow are derived. The ratio of the total mass flux during gas hydrate formation in a cluster with N unit cells to the mass flux in a cluster with an infinite number of unit cells is determined. The number of unit cells that yield 95% of the total amount of gas hydrates in an infinite cluster of unit cells is calculated and formula for an optimal length of a gas hydrate slug flow reactor is derived.  相似文献   

20.
The mixed-convection flow from a hot vertical impinging jet on a colder horizontal disc has been studied. The geometry is analogous to a conventional burning gas cooktop. A numerical simulation of the system has been carried out using the finite-element method to study the dependence of fluid flow and heat transfer on the geometric, thermal, and fluid flow parameters. Results show that heat transfer efficiency versus several parameters such as inlet velocity magnitude and flue gas temperature has an optimum value, in which heat transfer efficiency is maximum. With thermal conductivity of the solid wall, velocity angle, and solid wall diameter heat transfer efficiency has increasing behavior. Finally, with solid wall height and solid wall thickness, heat transfer efficiency has diminishing behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号