首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 306 毫秒
1.
In large, slow, cross‐head marine diesel engines research has increasingly shown that the lubrication regime between piston rings and cylinder liner at top dead centre is of the boundary lubrication type due to the high gas pressure, low sliding speed, and high temperature. This means that the tribological properties of piston ring, cylinder liner, and cylinder lubricant in these types of engine under boundary lubrication conditions should be considered simultaneously when friction and wear between the piston ring and cylinder liner are studied. Until now there has been no standard method to evaluate boundary lubrication performance. There are a few traditional methods used in lubricant research, but their results are not correlated with service conditions. It is important to find a suitable method to evaluate the boundary lubrication performance of lubricants at the laboratory testing stage or before the engine testing stage. The important parameters, such as sliding speed, normal load, materials of the contacting pairs, and lubricant, need all to be controlled. In this paper a systematic experimental procedure, the ‘five times heating and cooling test’, is introduced to assess lubricant properties under boundary lubrication conditions. Most of the parameters mentioned above are controlled. The model contact, of pin‐on‐plate form, is made from the actual piston and liner materials used in a large‐bore, slow, cross‐head marine diesel engine. The temperature characteristics of different blends of lubricants are investigated under boundary lubrication conditions using a pin‐on‐plate reciprocating test rig. These blends of lubricants have the same additives but different base fluids; they nevertheless fulfil the physical and chemical requirements of a real marine diesel engine. The test temperature range is from room temperature to the working temperature of the top piston ring. The experiments show that there are different temperature—friction characteristics for lubricants with different bases and the same additive package and there are also different temperature—friction characteristics during heating up and cooling down for each blend. Single‐base lubricants have more promising temperature—friction characteristics than those of a blend of a high‐viscosity base and a low‐viscosity base at high temperature.  相似文献   

2.
This study investigates the rheological properties, elastohydrodynamic film thickness, and friction coefficients of several commercially available polyalphaolefin (PAO) and polydimethylsiloxane (PDMS)-based lubricants to assess relationships between molecular structure and lubricant performance. Molecular structures and masses were determined by nuclear magnetic resonance spectroscopy and gel permeation chromatography, respectively. Density and viscosity are measured from 303 to 398?K, while elastohydrodynamic lubricant film thickness and friction measurements were made at temperatures, loads, and speeds that are representative of boundary, mixed, and full-film lubrication regimes. The results show that PDMS-based lubricants are thermally and oxidatively more stable than PAOs, while the viscosity of PDMS-based lubricants is generally less temperature sensitive than PAOs, except for highly branched polysiloxanes. In particular, this study provides quantitative insight into the use of PDMS-based lubricants to obtain low friction through the entire lubrication regime (boundary to full film) by optimal tuning of the molecular mass and chain branching.  相似文献   

3.
This paper presents a material combination that reduces the friction coefficient markedly to a superlow friction regime (below 0.01) under boundary lubrication. A state approaching superlubricity was obtained by sliding hardened steel pins on a hydrogen-free diamond-like carbon (DLC) film (ta-C) lubricated with a poly-alpha-olefin (PAO) oil containing 1 mass% of an ester additive. This ta-C/steel material combination showed a superlow friction coefficient of 0.006 at a sliding speed of 0.1 m/s. A hydrogencontaining DLC coating/steel combination also showed a lower friction coefficient in air than a steel/steel combination, 0.1 vs. 0.8, but no large reduction was observed when the sliding surfaces were lubricated with ordinary 5W-30 engine oil and the PAO oil containing an ester additive. The friction coefficient of the hydrogen containing DLC/steel combination lubricated with the PAO containing an ester additive was above 0.05. On the other hand, the superlow friction performance demonstrates that the rolling contact friction level of needle roller bearings can be obtained in sliding contact under a boundary lubrication condition. It is planned to apply this advanced DLC coating technology to valve lifters lubricated with a newly formulated engine oil in actual mass-produced gasoline engines. A larger friction reduction of more than 45% is expected to be obtained at an engine speed of 2000 rpm.  相似文献   

4.
On the basis of an energy model of failure of lubricant layers under conditions of boundary lubrication together with Kingsbury's desorption model and Zhurkov's formula, a model for the determination of the critical temperatures of lubricants under friction was developed. The model allows the estimation of the critical temperature values of oils and oils containing chemically active additives at various sliding speeds and realistic pressures at the specimen contact. Experimental data presented confirm the suggested calculations.  相似文献   

5.
Laser surface texturing (LST) is an emerging, effective method for improving the tribological performance of friction units lubricated with oil. In LST technology, a pulsating laser beam is used to create thousands of arranged microdimples on a surface by a material ablation process. These dimples generate hydrodynamic pressure between oil-lubricated parallel sliding surfaces. The impact of LST on lubricating-regime transitions was investigated in this study. Tribological experiments were carried out on pin-on-disk test apparatus at sliding speeds that ranged from 0.15 to 0.75 m/s and nominal contact pressures that ranged from 0.16 to 1.6 MPa. Two types of oil with different viscosities (54.8 cSt and 124.7 cSt at 40°C) were evaluated as lubricants. Electrical resistance between flat-pin and laser-textured disks was used to determine the operating lubrication regime. The test results showed that laser texturing expanded the range of speed-load parameters for hydrodynamic lubrication. LST also reduced the measured friction coefficients of contacts that operated under the hydrodynamic regime. The beneficial effects of laser surface texturing are more pronounced at higher speeds and loads and with higher viscosity oil.  相似文献   

6.
The measuring and modelling of friction are critically important for the motion control in nanopositioning, particularly when bearings are employed to cover the wide working distances. Since the positioning system usually operates at very low speed to achieve fine positioning, the boundary lubrication is the dominant regime. A detailed characterization of the friction of boundary lubrication formed by Poly–α–Olefin (PAO) with and without surfactant and a suspension of MoS2 in base oil has been performed in reciprocating sliding tests by steel/steel point contacts, and correlated with adhesion measurements by silicon/silicon point contacts. A microtribometer based on laser interferometers and glass springs, which can resolve 100 nN force in a speed range of 1–1000 μm/s was employed to detect the minute changes in forces. We find that a simple linear function instead of a logarithmic function is possible to describe the relationship between the friction force and operating speed for all the lubricants tested, though the gradients are quite different and under the influence of normal load. Comparing to PAO+surfactant and MoS2 suspension, PAO shows a much higher load-dependent coefficient of friction. This result is further confirmed by the repulsion force measurements, which shows a higher increase of contact pressure with the increase of normal load for PAO.  相似文献   

7.
The well-known problem of stiction in a magnetic disk drive largely depends on the forces induced by the presence of a thin liquid film. It is commonly recognized that both adhesive and viscous effects contribute to the magnitude of the stiction force, but is is not known what relative roles the two effects have in a lubricated contact. In the present work, the nature of adhesive and viscous effects is investigated for the slider/disk interface under conditions of constant-speed sliding.

Friction measurements are conducted over a range of sliding speeds, 0.25-250 mm/s, with eight perfluoropolyether (PFPE) lubricants applied in various thicknesses, 0-6.6 nm, to carbon-coated magnetic thin-film disks. The lubricants were selected to cover a broad range of viscosities. For several sliding speeds and lubricant film thicknesses, the friction force is found to decrease significantly with increasing sliding speed for all lubricants. In several instances, large friction forces are observed at the lowest sliding speeds, indicating stiction-like behavior, whereas, at higher speeds, the friction is reduced to even below unlubricated friction levels. At the highest film thickness and sliding speed, the friction was found to increase with speed for some lubricants. The implications of these results on current models of lubricant-mediated adhesion are discussed.  相似文献   

8.
In the present study, the tribological performance and compatibility of hydrogenated amorphous carbon coating (a-C:H) and metal-doped diamond-like carbon (DLC) coating (Me-C:H) with formulated oils under the boundary lubrication regime was investigated. The investigation employed ball-on-flat contact geometry in reciprocating sliding motion and six formulated oils (manual gearbox oil, automatic gearbox oil, hydraulic oil, compressor oil, and normal and high performance motor oil), with pure poly-alpha-olefin (PAO) oil used as a reference. In addition, DLC coatings behavior in diesel and gasoline fuel was evaluated.Compared with the uncoated steel surfaces a-C:H coatings give improved wear resistance in base PAO as well as in fully formulated oils and fuels. On the other hand, W-doped DLC coatings show the lowest steady-state friction under boundary lubrication, especially when using oils with high additive contents.  相似文献   

9.
Two typical protic ionic liquids with ammonium salts modified linear alkylbenzene sulfonic acid (LABSA) were synthesised, and their tribological behaviours used as both lubricants compared with PAO10 and additives in PAO10 were evaluated with an Optimol SRV‐I oscillating reciprocating friction and wear tester. The results show that the two novel protic ionic liquids with ammonium salts modified LABSA exhibited excellent friction‐reducing and anti‐wear properties as lubricants and can also significantly improve the tribological performance of the base fluids as friction modifier additives. The worn surfaces were characterised by scanning electron microscope and X‐ray photoelectron spectroscopy, indicating that the excellent anti‐wear and friction‐reducing performance could attributed to the boundary lubrication films that could contain both the tribochemical film composed of organic amine decomposed from the protic ionic liquids with ammonium salts and the stable chemical absorbed film through the interactions between the sulfonate anions and surface metallic atoms during the sliding process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A combination if electron photo micrographs and sensitive friction measurements indicate that the dry friction if glass may be due to surface melting under frictional heat. Stick slip phenomena are examined and the characteristic “tear drop” scratch is seen to be composed if a widening track if fused cracks ending in a “circular spot” if fused glass. Low temperatures or lubrication prevent this. For short durations at low loads, temperatures, and sliding speeds, most lubricants gave the same friction and wear results. When conditions become more severe or time more extended, various classes if lubricant excellence can be found. Wear measurements following “run in” indicate that with proper lubricants and operating conditions glass bearing surfaces can be operated at high loads and high temperatures.  相似文献   

11.
The effects of sliding speed and normal load on friction coefficients of self-mated Si3N4 and SiC sliding in water after running-in in water were investigated with pin-on-disk apparatus at sliding speeds of 30 to 120 mm/s, normal loads of 1 to 14 N in ambient condition. The results showed that, after running-in in water, for two kinds of self-mated ceramics, friction coefficient increases with both decreasing sliding speed and increasing normal load when normal load is larger than a critical normal load. Friction coefficient was independent of normal load when normal load is smaller than the critical load. The lubrication film of Si3N4 under water lubrication exhibited larger load carrying capacity than that of SiC did. Stribeck curves indicated that, for self-mated Si3N4 ceramics, hydrodynamic lubrication will change into boundary lubrication abruptly when the sommerfeld number is less than a critical value; while for self-mated SiC ceramics, hydrodynamic lubrication will change into mixed lubrication and then into boundary lubrication gradually when the sommerfeld number is below critical value.  相似文献   

12.
Laser surface texturing (LST) is an emerging effective method for improving the tribological performance of friction units lubricated with oil. In LST technology, a pulsating laser beam is used to create thousands of arranged microdimples on a surface by a material ablation process. These dimples generate hydrodynamic pressure between oil-lubricated parallel sliding surfaces. The impact of LST on lubricating-regime transitions was investigated in this study. Tribological experiments were conducted with a pin-on-disk apparatus at sliding speeds in the range of 0.015–0.75 m/s and nominal contact pressures that ranged from 0.16 to 1.6 MPa. Two oils with different viscosities (54.8 and 124.7 cSt at 40 °C) were used as lubricants. The test results showed that laser texturing expanded the contact parameters in terms of load and speed for hydrodynamic lubrication, as indicated by friction transitions on the Stribeck curve. The beneficial effects of laser surface texturing are more pronounced at higher speeds and loads and with higher viscosity oil.  相似文献   

13.
The friction behaviour of five different gear oils in rolling–sliding and pure sliding contacts and how temperature influences their friction properties were investigated. It is found that increasing temperature decreases boundary friction with gear oils that contain friction modifiers while not for other gear oils, at all contact pressures investigated. In mixed lubrication region, temperature decreases friction at low contact pressures while increases friction at high contact pressures. The effect of slide–roll ratio on friction is significant in boundary lubrication region especially at higher temperature while less significant in mixed lubrication region at both low and high temperatures. The ranking of gear oils for friction in boundary and mixed lubrication regimes is similar both in rolling–sliding and pure sliding contacts, regardless of temperature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
界面滑移条件下点接触Stribeck曲线的实验研究   总被引:4,自引:0,他引:4  
采用高黏度聚异丁烯润滑油,在光学弹流实验机上考察球-盘接触纯滑条件下的摩擦因数随卷吸速度和载荷的变化。结果表明,随着卷吸速度的增加,球-盘接触副进入弹流润滑并向流体动压润滑转变的过程中,摩擦因数并不像传统的Stribeck曲线一样,随着卷吸速度的增加而单调增加,而是呈现先上升、后下降、再上升的趋势,其中摩擦因数下降时的起始速度大致为凹陷出现的速度,摩擦因数再上升时的速度大致是润滑进入动压润滑的速度。初步论证界面滑移为产生上述波动的主要原因。  相似文献   

15.
The use of ethanol as engine fuel has increased for environmental reasons, both in flex-fuel engines and as increasing amounts of ethanol blended with gasoline in conventional engines. This article describes an investigation into the effects of ethanol contamination of lubricants during engine use with ethanol fuel. To facilitate this, a new technique was developed to measure small amounts of ethanol in lubricants. Elastohydrodynamic film thickness measurements and Stribeck curves were obtained for Group I base and formulated oils containing small added amounts of ethanol. The effect of the water present in hydrated ethanol was evaluated by carrying out tests using both hydrated and anhydrous ethanol. Measurements were also carried out using a Group II base oil with added ethanol. These measurements showed that in the low entrainment speed region, where the elastohydrodynamic film is very thin so that boundary lubrication prevails, the addition of ethanol produced a boundary film, which was not present for the base oils. By contrast, the addition of ethanol to formulated oil reduced film thickness in all lubrication regimes. The friction tests showed friction reduction due to addition of ethanol to the base oil, in particular at low speeds. For the formulated oil, ethanol reduced friction at high speeds, which was associated with a reduction in the viscosity of the lubricant, but at low speeds, ethanol reduced the formation of a boundary layer, increasing friction. The presence of water in hydrated ethanol did not significantly change the film thickness and friction when compared with anhydrous ethanol.  相似文献   

16.
Jianwei Qi  Liping Wang  Fengyuan Yan  Qunji Xue 《Wear》2013,297(1-2):972-985
Combination of solid and liquid lubricants to meet emission or environmental requirements of future tribological systems while providing the levels of desired friction and wear performance have received considerable research attention in the near term. The aim of the present work was to investigate the tribological behavior of oil-lubricated (PAO, PFPE, SO, IL and MAC) DLC coated surfaces under the conditions without and with sand-dust particles. The effects of applied load, frequency, and sand-dust particles on the tribological performance of DLC coating were systemically studied. The analysis results showed that solid–liquid lubricating coatings including SO and IL exhibited excellent anti-friction (~0.026) but relative poor wear-resistance performances under the conditions without and with sand-dust environments. But for PFPE and PAO, they demonstrated the worst tribological behaviors with high friction coefficient and wear rates. The added sand-dust particles lead to the wear rates to the one order of magnitude large than that without sand-dust conditions for all the selected liquid lubricants. The viscosity, contact angle and work of adhesion played an important part in affecting the tribological performances. The lubrication regimes in Stribeck curve for the five kinds of liquid lubricants were affected obviously by the sand-dust particles in different way. The formed transfer films on the coating surface and pin have much influence on the tribological behavior and the transition between lubrication regimes.  相似文献   

17.
ABSTRACT

In this study, the time-dependent formation process of molybdenum dithiocarbamate (MoDTC)-derived tribofilms at steel/steel contact under boundary lubrication was investigated by using an in situ Raman tribometer. Especially, we focused on the effects of zinc dialkyldithiophosphate (ZDDP) concentration in MoDTC solution on MoDTC tribofilm formation process. A laboratory-built in situ Raman tribometer was used to evaluate friction and the formation process of MoDTC-derived tribofilms. All our results clearly suggest that there is an optimum ZDDP concentration in MoDTC solution for promoting the formation of MoS2 tribofilms on the sliding surfaces, and there is also a threshold value for the formation rate of MoS2 on the sliding surface for achieving low friction under lubrication with MoDTC-containing lubricants.  相似文献   

18.
S. Jahanmir 《Wear》1985,102(4):331-349
The effect of additive chain length on friction coefficient and transition temperature is investigated under different test conditions. Carboxylic acids and normal alcohols with 12 – 18 carbon atoms in the chain were used as additives in n-hexadecane base lubricant. It was found that the magnitude of the friction coefficient decreases as the additive chain length is increased. Matching of the additive chain length with the base lubricant had no effect on the friction coefficient. Similarly, the transition temperature at low sliding speeds increased with increasing chain length and was not affected by chain matching. At higher speeds, the acids containing 16 and 18 carbon atoms did not exhibit a transitional behavior within the studied temperature range. These results are discussed in terms of the separation distance between the contacting surfaces, the intermolecular dispersion forces and the structure of adsorbed layers. It is concluded that, at very low speeds, boundary lubrication is controlled by adsorbed monolayers, whereas at higher speeds, where partial elastohydrodynamic conditions prevail, ordered multimolecular layers may influence lubrication.  相似文献   

19.
We study the lubricated (wet) contact mechanics of a smooth hard cylinder sliding on a randomly rough nominally flat surface of a linear viscoelastic solid. We calculate the rolling and sliding friction, and study the transition from the boundary lubrication to the elasto-hydrodynamic lubrication regime. For the viscoelastic contact the minimum (average) separation does not monotonically increase with the sliding velocity, and the Stribeck curve exhibits new structures not shown for elastic solids.  相似文献   

20.
A paper-based wet friction material lubricated with automatic transmission fluids (ATFs) produces plateau and positive slope regions in the friction–sliding velocity diagram. This feature observed at less than 1 mm/s of sliding velocity is discussed in this paper. The relationship between the friction and contact pressures of less than 5 MPa was determined by a reciprocating friction test rig lubricated with mineral oil including phosphoric acid ester, one of the additives for ATFs. The real contact area for dry condition was also determined by optical interferometry. The consistency of the real contact pressure dependency of the shear strength of the boundary film was indicated at pressures of less than 1 GPa obtained by steel-on-steel boundary friction (oiliness) test. This suggests that the generation of the positive slope region is due to thin film lubrication. To the plateau region, possibility of application of the phase transition model is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号