首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A three-dimensional study of laminar flow and heat transfer in a channel with built-in oval tube and delta winglets is carried out through the solution of the complete Navier-Stokes and energy equations using a body-fitted grid and a finite-volume method. The geometrical configuration represents an element of a gas-liquid fin-tube cross-flow heat exchanger. The size of such heat exchangers can be reduced through enhancement of transport coefficients on the air (gas) side, which are usually small compared to the liquid side. In a suggested strategy, oval tubes are used in place of circular tubes, and delta-winglet type vortex generators in various configurations are mounted on the fin-surface. An evaluation of the strategy is attempted in this investigation. The investigation is carried out for different angles of attack of the winglets to the incoming flow for the case of two winglet pairs. The variation of axial location of the winglets is also considered for one pair of winglets mounted in common-flow-down configuration. The structures of the velocity field and the heat transfer characteristics have been presented. The results indicate that vortex generators in conjunction with the oval tube show definite promise for the improvement of fin-tube heat exchangers.  相似文献   

2.
This investigation stems from the area of augmentation of heat transfer by generating streamwise longitudinal vortices. The vortex generators are arranged in a common-flow-up configuration. Existing air-cooled condensers in geothermal power plants use fin-tube heat exchangers with circular tubes. The heat exchangers are huge, and often the cost of the condensers is more than one-third of the plant cost. The size of the condensers can be reduced through enhancement of heat transfer from fin surfaces. The enhancement strategy involves introduction of strong swirling motion in the flow field. The swirl can be generated by the longitudinal vortices. In this study, the longitudinal vortices are created by delta winglet-type vortex generators, which are mounted behind the tubes. An element of a heat exchanger has been considered for detailed study of the flow structure and heat transfer analysis. Biswas and colleagues have obtained significant enhancement of heat transfer by deploying the winglet pair behind each tube. In this study, a novel technique (Torii and colleagues [2]) has been utilized for the enhancement. The winglets are placed with a heretofore unused orientation for the purpose of augmentation of heat transfer. This orientation is called the common-flow-up configuration. The proposed method causes significant separation delay, reduces form drag, and removes the zone of poor heat transfer from the near wake of the tubes. The analyses of flow and heat transfer in the proposed configuration have been accomplished through a numerical solution of complete Navier-Stokes and energy equations.  相似文献   

3.
利用三维数值模拟的方法对带有3种异形纵向涡发生器的H型翅片椭圆管换热器的空气侧流动传热特性进行研究。基于H型翅片椭圆管束,讨论了在不同雷诺数下,纵向涡发生器的摆放位置、摆放攻角和形状对空气侧流动传热的影响。研究表明:纵向涡发生器能够将高能量的流体引向流速较低的壁面区域,使冷热流体之间的混合加剧,增强流体的湍流动能,进而达到强化传热的效果;与无纵向涡发生器的管束相比,带纵向涡发生器管束的传热效果有明显的提高;当纵向涡发生器后置时,换热器的传热效果最优;在雷诺数相同,攻角为30°时,流体的传热性能和阻力特性均达到最优;相同攻角摆放时,椭圆角矩形发生器的传热性能和阻力因子均优于其他两种形式的发生器。研究结果为烟气余热回收系统换热器传热性能强化提供理论依据。  相似文献   

4.
In order to enhance rate of heat transfer to flowing air in the duct of solar air heater and in heat exchanger or in cooling of turbine blade various turbulence generators viz. ribs, baffles and delta winglets are considered as an effective technique. Investigators reported various turbulence generators in literature for studying heat transfer, friction characteristics and flow pattern in heat exchanger and in solar air heater. In the present article an attempt has been made to categorize and review the reported turbulence generators used for heat transfer enhancement in heat exchanger and solar air heater and gives an approach for further research for forced convection from the surfaces with large scale roughness.  相似文献   

5.
Heat management is crucial to the stable and high-efficiency operation of proton exchange membrane fuel cell (PEMFC) system. However, fin-tube heat exchangers (FTHE) of traditional internal combustion engine vehicles require further optimizations to be applicable to PEMFC vehicles. In the paper, a three-dimensional steady-state radiator model is developed in OpenFOAM to investigate three novel structural designs based on wavy-louvred (WL) fin and vortex generators (VGs). The established model has been carefully validated against experimental data and correlation reference. To comprehensively evaluate radiator performances, the air side heat transfer coefficient, pressure drop, outlet air temperature, heat flux, and JF factor are adopted. It is found that the FTHE with L-VGs has the highest heat transfer coefficient while the FTHE with WL-VGs has the highest pressure drop. The temperature, velocity, and pressure distribution are further demonstrated to reveal performance enhancement mechanisms. It is seen that the heat exchangers with additional VGs produce two sections of high-temperature wakes near the wall, which not only promotes the heat convection but also contributes to the heat exchange in the nearby area. Meanwhile, a low-speed vortex zone behind VGs appears and generates longitude vortex, making the air stream stay longer at fin surfaces. The air flow in FTHE with WL is not as much separated as the conventional FTHE since the zigzag wavy louver restricts flow separation. The paper gives valuable suggestions for cooling capability improvement and radiator volume diminution.  相似文献   

6.
This article investigates the effectiveness of embedded vortex generators in enhancing the heat transfer performance of a plate-fin heat exchanger with a four-row staggered oval tube bundle. Two different types of vortex generator are considered, namely annular and inclined block. Numerical simulations are performed to analyze the effects of the three-dimensional turbulence induced by the vortex generators on the heat transfer and fluid flow characteristics of the heat exchanger. The results indicate that compared to a plate-fin heat exchanger with circular tubes, the use of oval tube fins and vortex generators increases the heat transfer rate by 3 to 16% and reduces the pressure drop by 17 to 35% for inlet velocities in the range of 1 to 8 m/s. Furthermore, the vortex generators make possible an average area reduction ratio of 14 to 18%. Overall, the results show that the inclined block shape vortex generators yield the greatest improvement in the heat transfer performance at medium to high inlet velocities.  相似文献   

7.
This study presents numerical computation results on laminar convection heat transfer in a rectangular channel with a pair of rectangular winglets longitudinal vortex generator punched out from the lower wall of the channel. The effect of the punched holes and the thickness of the rectangular winglet pair to the fluid flow and heat transfer are numerically studied. It is found that the case with punched holes has more heat transfer enhancement in the region near to the vortex generator and lower average flow frictional coefficient compared with the case without punched holes. The thickness of rectangular winglet can cause less heat transfer enhancement in the region near to the vortex generator and almost has no significant effect on the total pressure drop of the channel. The effects of Reynolds number (from 800 to 3000), the attack angle of vortex generator (15°, 30°, 45°, 60° and 90°) were examined. The numerical results were analyzed from the viewpoint of field synergy principle. It was found that the essence of heat transfer enhancement by longitudinal vortex can be explained very well by the field synergy principle, i.e., when the second flow generated by vortex generators results in the reduction of the intersection angle between the velocity and fluid temperature gradient, the heat transfer in the present channels will be enhanced. Longitudinal vortices (LVs) improve the synergy between velocity and temperature field not only in the region near LVG but also in the large downstream region of longitudinal vortex generator. So LVs enable to enhance the global heat transfer of channel. Transverse vortices (TVs) only improve the synergy in the region near VG. So TVs can only enhance the local heat transfer of channel.  相似文献   

8.
Vortex generators in the form of delta winglet pairs have already been proposed by many researchers for enhancement of the heat transfer rate in plate-fin heat exchangers. In this work, the enhancement potential of triangular fins (which are widely used inserts between the plates of the plate-fin heat exchanger) having delta winglets mounted on their slant surfaces has been computed. The performance of this combination is evaluated for varying angles of attack of the winglet and different thermal boundary conditions. The performance of the combination of triangular fins and winglets with stamping on the slant surfaces also has been evaluated.  相似文献   

9.
In the current work, heat transfer enhancement and pressure loss penalty for fin-and-tube compact heat exchangers with the wavy-up and wavy-down rectangular winglets as special forms of winglet are numerically investigated in a relatively low Reynolds number flow. The rectangular winglets were used with a particular wavy form for the purpose of enhancement of air side heat transfer performance of fin-and-tube compact heat exchangers. The effect of Reynolds numbers from 400 to 800 and angle of attack of 30° of wavy rectangular winglets are also examined. The effects of using the wavy rectangular winglet, conventional rectangular winglet configuration and without winglet as baseline configuration, on the heat transfer characteristics and flow structure are studied and analyzed in detail for the inline tube arrangements. The results showed that the wavy rectangular winglet can significantly improve the heat transfer performance of the fin-and-tube compact heat exchangers with a moderate pressure loss penalty. In addition, the numerical results have shown that the wavy winglet cases have significant effect on the heat transfer performance and also, this augmentation is more important for the case of the wavy-up rectangular winglet configuration.  相似文献   

10.
This paper summarizes the current state of the art related to improvement of the heat exchanger surfaces using streamwise longitudinal vortices. Primarily, the improvements related to fin-tube cross-flow heat exchangers and the plate-fin heat exchangers have been addressed. Protrusions in certain forms, such as delta wings or winglet pairs, act as vortex generators, which can enhance the rate of heat transfer from the heat-exchanger surfaces that may be flat or louvered. The strategically placed vortex generators create longitudinal vortices, which disrupt the growth of the thermal boundary layer, promote mixing between fluid layers, and hence lead to augmentation in heat transfer. The flow fields are dominated by swirling motion associated with modest pressure penalty. Heat transfer is augmented substantially for all the proposed configurations of the longitudinal vortex generators, such as delta wings, rectangular winglet pairs, and delta winglet pairs, with varying degree of pressure penalty. Both computational and experimental investigations on flow and heat transfer in the heat exchanger passages with built-in vortex generators are revisited and summarized.  相似文献   

11.
This paper proposes a novel technique that can augment heat transfer but nevertheless can reduce pressure-loss in a fin-tube heat exchanger with circular tubes in a relatively low Reynolds number flow, by deploying delta winglet-type vortex generators. The winglets are placed with a heretofore-unused orientation for the purpose of augmentation of heat transfer. This orientation is called as “common flow up” configuration. The proposed configuration causes significant separation delay, reduces form drag, and removes the zone of poor heat transfer from the near-wake of the tubes. This enhancement strategy has been successfully verified by experiments in the proposed configuration. In case of staggered tube banks, the heat transfer was augmented by 30% to 10%, and yet the pressure loss was reduced by 55% to 34% for the Reynolds number (based on two times channel height) ranging from 350 to 2100, when the present winglets were added. In case of in-line tube banks, these were found to be 20% to 10% augmentation, and 15% to 8% reduction, respectively.  相似文献   

12.
A 3-D numerical simulation is performed on laminar heat transfer and flow characteristics of a slit fin-and-tube heat exchanger with longitudinal vortex generators. Heat transfer enhancement of the novel slit fin mechanism is investigated by examining the effect of the strips and the longitudinal vortices. The structure of the slit fin is optimized and analyzed with field synergy principle. The result coincides with the guideline ‘front coarse and rear dense’. The heat transfer and fluid flow characteristics of the slit fin-and-tube heat exchanger with longitudinal vortex generators are compared with that of the heat exchanger with X-shape arrangement slit fin and heat exchanger with rectangular winglet longitudinal vortex generators. It is found that the Colburn j-factor and friction factor f of the novel heat exchanger with the novel slit fin is in between them under the same Reynolds number, and the factor j/(f1/3) of the novel heat exchanger increased by 15.8% and 4.2%, respectively.  相似文献   

13.
纵向涡强化换热的优化设计及机理分析   总被引:1,自引:0,他引:1  
对带纵向涡发生器的椭圆管翅片换热器空气侧表面的换热和流动特性进行了三维数值模拟.深入分析了纵向涡对流场和温度场的影响,并通过场协同原理揭示了纵向涡强化换热的根本机理,即减小了速度和温度梯度之间的夹角,改善了速度场和温度场的协同性.在此基础上,对纵向涡发生器的布置位置(上游布置和下游布置)和纵向涡发生器的攻角α(15°,30°,45°,60°)进行了优化设计.结果表明:当纵向涡发生器布置于换热管下游时,具有更好的强化换热能力;在纵向涡发生器采用下游布置的前提下,当纵向涡发生器的攻角α=30°时,具有最佳的强化换热能力.  相似文献   

14.
建立了可进行壳管式换热器动态特性试验研究系统,通过试验研究的方法对水-油为换热工质的连续螺旋折流板管壳式换热器动态特性进行了试验研究,进口流量扰动为等百分比流量特性,研究了4种流量扰动方式下水和油出口温度的动态响应。同时研究了在一定Re数下,不同的流体扰动量对换热器进出口温升的影响,得到了换热器进出口温升与流体扰动量之间的关联式。实验表明,液液换热系统温度的动态响应时间比较长,研究发现在正负的流量扰动下,换热器进出口温度变化呈现线性变化,进出口温升在正负流量扰动下其变化曲线具有对称特征。分别建立了有限差分数值预测模型及人工神经网络模型对换热器油侧的出口温度进行了动态预测,预测结果与试验值符合良好,人工神经网络的预测结果要好于数值模拟预测,其偏差绝对值在1.3%以内,表明人工神经网络在进行复杂的系统辨识时具有一定的参考及应用价值。  相似文献   

15.
The effectiveness of delta-wing type vortex generators is experimentally evaluated by full-scale wind-tunnel testing of a compact heat exchanger typical to those used in automotive systems. The mechanisms important to vortex enhancement methods are discussed, and a basis for selecting a delta-wing design as a vortex generator is established. The heat transfer and pressure drop performance are assessed at full scale under both dry- and wet-surface conditions for a louvered-fin baseline and for a vortex-enhanced louvered-fin heat exchanger. An average heat transfer increase over the baseline case of 21% for dry conditions and 23.4% for wet conditions was achieved with a pressure drop penalty smaller than 7%. Vortex generation is proven to provide an improved thermal-hydraulic performance in compact heat exchangers for automotive systems.  相似文献   

16.
In order to reduce the size and cost of heat exchangers, an air-side wavy fin-and-tube heat transfer surface with three-row tubes needs to be replaced by two-row tubes with some appropriate enhancing techniques. The major purpose of the present paper is to search for such new structure by numerical simulation. First, longitudinal vortex generators of Delta-winglet type are tried. The influence of number and of arrangement of the winglets on the performance of the heat transfer surface is studied in detail. The numerical results show that the fin with two winglets aligned spanwise in the front and rear of each tube (Fin W6) has higher heat transfer capability than other enhanced structures with vortex generators, but it still unable to meet the heat transfer requirement. Then a combination design of the longitudinal vortex generator with slotted protruding parallel strips is proposed and different variations of their arrangement are tried. Finally we come to such a combination (C3), which is based on Fin W6 with additional eight protruding strips situated at five positions (grouped by 1, 2, 2, 2, and 1) along the flow direction. Fin C3 can satisfy the requirements for heat transfer rate of the original wavy fin of three-row tubes with a mild increase in pressure drop, and its volume and material reduce to about 67% of the original one.  相似文献   

17.
A two-dimensional steady-state numerical model is developed to study the heat transfer in a run-around heat recovery system with two exchangers each with a combination of counter and cross (counter/cross) flow between parallel plates or membranes. A finite difference method is used to solve the steady-state equations of continuity, momentum and heat transfer. The simulated values for the effectiveness of each counter/cross flow heat exchanger and the overall run-around system are used to develop effectiveness correlations which agree within ±2% of the simulated effectiveness of individual heat exchangers and overall system. It is shown that the effectiveness of this new run-around heat exchanger (RAHE) falls between the effectiveness of similar run-around systems with either two cross-flow exchangers or two counter-flow exchangers. For a given total surface area of the exchangers, the highest overall sensible effectiveness is achieved with exchangers which have a small exchanger aspect ratio and relatively small solution flow inlet and outlet lengths.  相似文献   

18.
This paper reports the use of artificial neural network models to simulate the thermal performance of a compact, fin-tube heat exchanger with air and water/ethylene glycol anti-freeze mixtures as the working fluids. The model predictions were compared with experimental data over a range of flow rates and inlet temperatures and with various ethylene glycol concentrations. In addition, the inlet air flow was distorted by obstructing part of the inlet ducting near the front face of the exchanger. The artificial neural networks were able to predict the overall rate of heat transfer in the exchanger with a high degree of accuracy and in this respect were found to be superior over conventional non-linear regression models in capturing the underlying non-linearity in the data. Moreover the detailed spatial variations in outlet air temperature were also adequately predicted. The results indicate that appropriately trained neural networks can simulate both the overall and “local” characteristics of the compact heat exchanger. In addition the paper demonstrates how an alternative type of neural network, the so-called Self-Organising-Map (SOM), can be employed for heat exchanger condition monitoring by identifying and classifying the deterioration in exchanger performance which, in this case, was associated with different levels of inlet obstruction.  相似文献   

19.
The inlet and outlet duct geometry in an air to air compact heat exchanger is always irregular. A skewed Z-type arrangement is popular between the impinging flow and the core. Such duct placements usually lead to a non-uniform flow distribution on core surface. In this research, the flow maldistribution and thermal performance deterioration in cross-flow air to air heat exchangers are investigated. The inlet duct, the core and the outlet duct are combined together to calculate the flow distribution on core inlet face. First, a CFD code is used to calculate the flow distribution, by treating the plate-fin core as a porous media. Then a heat transfer model between the two air flows in the plate-fin channels is set up. Using the flow distribution data predicted, the heat exchange effectiveness and the thermal performance deterioration factor are calculated with finite difference scheme. Experiments are performed to validate the flow distribution and heat transfer model. The results indicate that when the channel pitch is below 2.0 mm, the flow distribution is quite homogeneous and the thermal deterioration due to flow maldistribution can be neglected. However, when the channel pitch is larger than 2 mm, the maldistribution is quite large and a 10–20% thermal deterioration factor could be found. The study proves that the inlet duct, the outlet duct, and the core should be coupled together to clarify flow maldistribution problems.  相似文献   

20.
《Applied Thermal Engineering》2007,27(8-9):1320-1326
A microchannel heat exchanger was numerically analyzed using the finite volume method. The air and refrigerant-side heat transfer coefficients and pressure drops were calculated using the existing correlations that were developed for microchannel heat exchangers. To verify the present model, performance tests of the microchannel heat exchanger were conducted at various test conditions with R134a. The present model yielded a good correlation with the measured heat transfer rate, demonstrating a mean deviation of 6.8%. The performance of the microchannel evaporator for CO2 systems can be improved by varying the refrigerant flow rate to each slab and changing fin space to increase the two-phase region in the microchannel. Based on the comparison of the performance of the microchannel heat exchanger with that of the fin-tube heat exchanger designed for CO2 systems, it was proposed that the arrangement of the slabs and inlet air velocity in the microchannel heat exchanger need to be optimized by considering heat exchanger size, air outlet conditions and required capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号