首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The wear and sliding friction response of a hybrid copper metal matrix composite reinforced with 10 wt% of tin (Sn) and soft solid lubricant (1, 5, and 7 wt% of MoS2) fabricated by a powder metallurgy route was investigated. The influence of the percentages of reinforcement, load, sliding speed, and sliding distance on both the wear and friction coefficient were studied. The wear test with an experimental plan of six loads (5–30 N) and five sliding speeds (0.5–2.5 m/s) was conducted on a pin-on-disc machine to record loss in mass due to wear for two total sliding distances of 1,000 and 2,000 m. The results showed that the specific wear rate of the composites increased at room temperature with sliding distance and decreased with load. The wear resistance of the hybrid composite containing 7 wt% MoS2 was superior to that of the other composites. It was also observed that the specific wear rates of the composites decreased with the addition of MoS2. The 7 wt% MoS2 composites exhibited a very low coefficient of friction of 0.35. The hardness of the composite increased as the weight percentage of MoS2 increased. The wear and friction coefficient were mainly influenced by both the percentage of reinforcement and the load applied. Wear morphology was also studied using scanning electron microscopy and energy-dispersive X-ray analysis.  相似文献   

2.
《Wear》1996,199(1):82-88
The friction and wear behavior of planar random zinc-alloy matrix composites reinforced by discontinuous carbon fibres under dry sliding and lubricated sliding conditions has been investigated using a block-on-ring apparatus. The effects of fibre volume fractions and loads on the sliding wear resistance of the zinc-alloy matrix composites were studied. Experiments were performed within a load range of 50–300 N at a constant sliding velocity of 0.8 m s−1. The composites with different volume fractions of carbon fibres (0–30%) were used as the block specimens, and a medium-carbon steel used as the ring specimen. Increasing the carbon fibre volume fraction significantly decreased the coefficient of friction and wear rates of both the composites and the medium-carbon steel under dry sliding conditions. Under lubricated sliding conditions, however, increasing the carbon fibre volume fraction substantially increased the coefficient of friction, and slightly increased the wear of the medium-carbon steel, while reducing the wear of the composite.Under dry sliding conditions, an increasing load increased not only the wear rates of both the composite and the unreinforced zinc alloy, but also those of their corresponding steel rings. However, the rate of increase of wear with increasing load for both the composite and its corresponding steel ring was much smaller than for the unreinforced zinc alloy and its corresponding steel ring. The coefficient of friction under dry sliding conditions appeared to be constant as load increased within a load range of 50–150 N for both the composite and the unreinforced zinc alloy, but increased at the higher loads. Under any load the coefficient of friction of the composite was lower than half that of the unreinforced zinc alloy under dry sliding conditions.  相似文献   

3.
In this work, the tribological behavior of micrometer and submicrometer cenosphere particulate–filled E-glass fiber–reinforced vinylester composites have been investigated on a pin-on-disc tester under dry sliding and water-lubricated sliding conditions. Three different uniform sizes of cenosphere particles (2 μm, 900 nm, 400 nm) were used as fillers in the glass fiber–reinforced vinylester composites. The weight fraction of cenosphere particles has been varied in the ranges from 5, 10, 15, to 20 wt%. The experimental results show that all of the composites exhibited lower coefficient of friction and lower wear resistance under water-lubricated sliding conditions than under dry sliding. It has been noted that the submicrometer size (400 nm) cenosphere particulates as fillers contributed significantly to improve the wear resistance. It has also been noted that 10 wt% of the cenosphere particles is the most effective in reducing the wear rate and coefficient of friction. Effects of various wear parameters such as applied normal loads, sliding speeds, particle size, and particle content on the tribological behavior were also discussed. In order to understand the wear mechanism, the morphologies of the worn surface were analyzed by means of scanning electron microscopy (SEM) for composite specimens under both dry and water-lubricated sliding conditions.  相似文献   

4.
Through a pin-on-disc type wear setup, the dry sliding wear behavior of SiC-reinforced aluminum composites produced using the molten metal mixing method was investigated in this paper. Dry sliding wear tests were carried on SiC-reinforced metal matrix composites (MMCs) and its matrix alloy sliding against a steel counter face. Different contact stresses, reinforcement percentages, sliding distances, and sliding velocities were selected as the control variables, and the responses were selected as the wear volume loss (WVL) and coefficient of friction (COF) to evaluate the dry sliding performance. An L25 orthogonal array was employed for the experimental design. Initially, the optimization of the dry sliding performance of the SiC-reinforced MMCs was performed using grey relational analysis (GRA). Based on the GRA, the optimum level parameters for overall grey relational grade in terms of WVL and COF were identified. Analysis of variance was performed to determine the effect of individual factors on the overall grey relational grade. The results indicated that the sliding velocity was the most effective factor among the control parameters on dry sliding wear, followed by the reinforcement percentage, sliding distance, and contact stress. Finally, the wear surface morphology and wear mechanism of the composites were investigated through scanning electron microscopy.  相似文献   

5.
High strength, light weight, ease of fabrication, excellent castability, and good wear resistance make aluminum alloy composites suitable for commercial applications. In this work, a silica-rich ash particle (palmyra shell ash) was reinforced with aluminum alloy (AlSi10Mg) composites and its mechanical and tribological properties were studied. The aluminum alloy was reinforced with 3, 6, and 9 wt% of palmyra shell ash particles, and its dry sliding wear behavior was studied using a pin-on-disc machine under different loading conditions. The result shows that the dry sliding wear resistance of Al–palmyra shell ash composites was almost similar to that of fly ash– and rice husk ash–reinforced Al-alloy composites and these composites exhibit better wear resistance compared to unreinforced alloy. The palmyra shell ash particle weight fraction significantly affects the wear and friction properties of the composites. Scanning electron microscopic examination of the worn surface reveals that at various loads palmyra shell ash particles act as load-bearing constituents and the wear resistance of the reinforced palmyra shell ash with a size range of 1–50 µm was superior to that of unreinforced alloy. Mechanical properties (hardness and tensile strength) were also studied and it was observed that the reinforced Al-alloy showed a significant increase in mechanical properties.  相似文献   

6.
This is a comparative study between ultra-high molecular weight polyethylene (UHMWPE) reinforced with micro-zinc oxide (ZnO) and nano-ZnO under different filler loads. These composites were subjected to dry sliding wear test under abrasive conditions. The micro- and nano-ZnO/UHMWPE composites were prepared by using a hot compression mould. The wear and friction behaviours were monitored using a pin-on-disc (POD) test rig. The pin-shaped samples were slid against 400 grit SiC abrasive papers, which were pasted, on the stainless steel disc under dry sliding conditions. The worn surfaces and transfer film formed were observed under the scanning electron microscope (SEM). Experimental results showed that UHMWPE reinforced with micro- and nano-ZnO would improve the wear behaviour. The average coefficient of friction (COF) for both micro- and nano-ZnO/UHMWPE composites were comparable to pure UHMWPE. The weight loss due to wear for nano-ZnO/UHMWPE composites are lower compared to micro-ZnO/UHMWPE and pure UHMWPE. The optimum filler loading of nano-ZnO/UHMWPE composites is found to be at 10 wt%. The worn surface of ZnO/UHMWPE composites shows the wear mechanisms of abrasive and adhesive wear. Upon reinforcement with micro- and nano-ZnO, the abrasive and adhesive wear of worn surfaces transited from rough to smooth.  相似文献   

7.
Carbon/silicon carbide (C/SiC) composites were prepared by a liquid silicon infiltration (LSI) process and their microstructure and friction and wear properties studied. The matrices of the C/C green bodies were found to be reinforced with dense carbon fiber bundles hanging together. The density of the composites before and after the LSI process was 1.25 and 1.94 g/cm3, respectively. However, the open porosity of C/SiC composites was about 16% due to the opening of closed pores during the machining process. The C/SiC composites exhibited excellent tribological properties in the dry condition, with an average coefficient of friction (COF) and wear rate of about 0.29 and 16.15 μg/m MPa, respectively. In comparison, the average COF was about 0.13 in the moist condition, with a wear rate of 5.87 μg/m MPa. The main wear mechanism of the C/SiC composites was worn particles and debris with a high degree of hardness, producing a plough effect on the friction surface in the dry condition and an adhesive effect in the moist condition.  相似文献   

8.
The results presented in this work show the wear characterization of Al-Si matrix composites reinforced by multiwall carbon nanotubes (MWCNTs) under dry reciprocating sliding conditions against a grey cast iron (GCI) The wear resistance is investigated as a function of the carbon nanotube (CNT) content that varied from 2 to 6 wt%. The results demonstrated that the CNT content plays a relevant role in the wear behavior by substantially reducing the wear loss of Al-Si CNT composites. Further, it reduces the wear loss of the grey cast iron counterface. A physical model able to explain the improved behavior in both mating materials is depicted from experimental results.  相似文献   

9.
Abstract

The present study addresses the dry wear behaviour of aluminium matrix composites under different sliding speeds and applied loads. Values of the friction coefficient of the matrix alloy and composite materials were in expected range for light metals in dry sliding conditions. The higher coefficient of friction was the consequence of established contact between hard SiC particles and the counter body material. The rough and smooth regions are distinguished on the worn surface of the composites similar to the unreinforced Al alloy. Plastic deformation occurred when the applied specific load was higher than the critical value. The high shear stresses on the sliding surface cause initiation and propagation of the cracks in the subsurface, leading to the loss of material from the worn surface in the form of flakes. The debrises of the composites at low wear rate comprise a mixture of the fine particles and small shiny metallic plate-like flakes and are associated with the formation of more iron rich layers on the contact surfaces.  相似文献   

10.
《Wear》2004,256(7-8):705-713
The purpose of this study is to investigate the wear properties of Saffil/Al, Saffil/Al2O3/Al and Saffil/SiC/Al hybrid metal matrix composites (MMCs) fabricated by squeeze casting method. Wear tests were done on a pin-on-disk friction and wear tester under both dry and lubricated conditions. The wear properties of the three composites were evaluated in many respects. The effects of Saffil fibers, Al2O3 particles and SiC particles on the wear behavior of the composites were elucidated. Wear mechanisms were analyzed by observing the worn surfaces of the composites. The variation of coefficient of friction (COF) during the wear process was recorded by using a computer. Under dry sliding condition, Saffil/SiC/Al showed the best wear resistance under high temperature and high load, while the wear resistances of Saffil/Al and Saffil/Al2O3/Al were very similar. Under dry sliding condition, the dominant wear mechanism was abrasive wear under mild load and room temperature, and the dominant wear mechanism changed to adhesive wear as load or temperature increased. Molten wear occurred at high temperature. Compared with the dry sliding condition, all three composites showed excellent wear resistance when lubricated by liquid paraffin. Under lubricated condition, Saffil/Al showed the best wear resistance among them, and its COF value was the smallest. The dominant wear mechanism of the composites under lubricated condition was microploughing, but microcracking also occurred to them to different extents.  相似文献   

11.
The aim of this study was to evaluate the tribological behavior of polyethylene crosslinked by gamma radiation sliding against a steel surface. Two high-density polyethylenes were irradiated to a total dose in the range of 2?20 Mrad under vacuum and at room temperature. After irradiation, the materials were annealed at 423 K and then cooled slowly to room temperature. The same thermal treatment was applied to the non-irradiated polymer. The wear behavior of the polymers was determined under controlled ambient temperature of 298 and 333 K using a homemade tribometer. Sheet-shaped specimens were loaded against the surface of a steel disc with different normal loads to generate nominal contact pressures in the range of 0.25–1.5 MPa. The tests were performed under dry conditions using a disc rotation to produce an average sliding speed of 0.6 m/s and during a period of time to provide an average sliding distance of 1,080 m. The wear rate was obtained as the mass loss by the sample divided by the sliding distance, and the friction coefficient was determined by measuring the friction force. The results indicate that the wear rate increases with load in the case of non-irradiated polyethylene and low-dose irradiated polymers, while the wear rate reaches a maximum value with the load in the case of the irradiated samples with high doses. The samples irradiated with a dose of 10 Mrad showed the lowest wear. The coefficient of friction (COF) increases slightly with the load in all the cases. Most irradiated polymers show higher COF than the non-irradiated material when compared at a given load. The results show that the irradiation dose applied to the polyethylenes produced no noticeable effect on the COF values when a comparison was made at a given applied load.  相似文献   

12.
Pin-on-disc dry sliding wear tests have been carried out to study the wear behaviour of 10 vol% TiC and (Ti,W)C-reinforced Fe–17Mn austenitic steel matrix composites. The composites have been synthesized in situ by means of conventional melting and casting route. It has been observed that the abrasive wear resistance of the composites is higher than that of their unreinforced Fe–17Mn austenitic steel. Compared with the TiC-reinforced composite, the abrasive wear resistance of the (Ti,W)C-reinforced composite is better. The abrasive wear resistance and coefficient of friction of both reinforced and unreinforced materials decrease as the load increases.  相似文献   

13.
The effect of 10 wt% VC addition on the friction and sliding wear response of WC–12 wt% Co cemented carbides produced by spark plasma sintering (SPS) was studied. The SPS of WC–12 wt% Co alloys with and without 10 wt% VC, at 1100 and 1130°C, respectively, yielded dense materials with minimal porosity. No eta phase was found in any of the alloys. The WC–12 wt% Co–10 wt% VC alloy showed the formation of a hard WV4C5 phase, which improved the alloy's hardness. Friction and dry sliding wear tests were done using a ball-on-disk configuration under an applied load of 10 N and sliding speed of 0.26 m.s?1, and a 100Cr-steel ball was used as the counterface. A significant improvement in the sliding wear response of the harder and more fracture tough WC–12 wt% Co–10 wt% VC alloy compared to the WC–12 wt% Co alloy was found. Analysis of the worn surfaces by scanning electron microscopy showed that the wear mechanisms included plastic deformation, preferential binder removal, adhesion, and carbide grain cracking and fragmentation.  相似文献   

14.
The objective of this investigation is to assess the influence of graphite reinforcement on tribological behavior of ZA-27 alloy. The composite with 2 wt% of graphite particles was produced by the compocasting procedure. Tribological properties of unreinforced alloy and composite were studied, using block-on-disk tribometer, under dry and lubricated sliding conditions at different specific loads and sliding speeds. The worn surfaces of the samples were examined by the scanning electron microscopy (SEM). The obtained results revealed that ZA-27/graphite composite specimens exhibited significantly lower wear rate and coefficient of friction than the matrix alloy specimens in all the combinations of applied loads (F n ) and sliding speeds (v) in dry and lubricated tests. The positive tribological effects of graphite reinforcement of ZA-27 in dry sliding tests were provided by the tribo-induced graphite film on the contact surface of composite. In test conditions, characterized by the small graphite content and modest sliding speeds and applied loads, nonuniform tribo-induced graphite films were formed leading to the increase of the friction coefficient and wear rate, with increase of the sliding speed and applied load. In conditions of lubricated sliding, the very fine graphite particles formed in the contact interface mix with the lubricating oil forming the emulsion with improved tribological characteristics. Smeared graphite decreased the negative influence of F n on tribological response of composites, what is manifested by the mild regime of the boundary lubrication, as well as by realization of the mixed lubrication at lower values of the v/F n ratio, with respect to the matrix alloy.  相似文献   

15.
Z. Eliezer  C.J. Schulz  H.E. Mecredy 《Wear》1979,52(1):133-139
Friction and wear experiments on two graphite fiber-aluminum matrix composites and two commercially pure metals (aluminum and copper) were conducted on a brake-type friction machine. The counterface material was graphitic cast iron. The composite samples were tested with the graphite fibers perpendicular to the counterface; the load varied from 5 to 100 N. The initial sliding velocity varied from 2.0 to 11.4 m s?1. The wear resistance of the HM-Al 1100 graphite fiber-aluminum matrix composite was found to be more than one order of magnitude better than that of the unreinforced matrix material. With aluminum and copper, the wear volume per braking cycle is proportional to the product of load and sliding distance in accord with both the adhesion and delamination theories of wear. For the two composite materials studied, the wear volume per braking cycle is proportional to the product of load and sliding time which cannot be explained by either of the two wear models. Thus the wear mechanism of composites might be fundamentally different from that of pure metals.  相似文献   

16.
The influence of hybrid reinforcements including silicon carbide and graphite particles with a size 37–50 μm on the wear characteristics of AZ91 magnesium alloy was studied. The dry sliding wear test was conducted using a pin-on-disc wear testing machine in the load range of 20 to 80 N at different sliding velocities in the range of 1.047 to 2.618 m/s. The results show that the wear resistance of composites was much better than that of the base matrix material under the test conditions. At a speed of 1.047 m/s and load of 40 N, the wear rate (mm3/km) of the unreinforced alloy was 6.3, which reduced to 3.8 in the case of 3% reinforced composite. The antiwear ability of magnesium alloy composite was found to improve substantially with the increase in silicon carbide and graphite content from 1 to 3% by weight and the wear rate was found to decrease considerably. At a speed of 1.047 m/s and load of 80 N, the wear rate (mm3/km) reduced from 11.8 to 9.1 when the reinforcement content increased from 1 to 3%. However in both the unreinforced alloy and reinforced composite, the wear rate increased with the increase in load and sliding velocity. An increase in the applied load increases the wear severity by changing the wear mechanism from abrasion to particle cracking-induced delamination. The worn surface morphologies of the composite containing 3% reinforcement by weight for the sliding velocity of 1.047 m/s were examined using scanning electron microscopy. Different wear mechanisms, namely, abrasion, oxidation, and delamination, have been observed.  相似文献   

17.
TiAl matrix self-lubricating composites (TMC) with various weight percentages of Ti3SiC2 and MoS2 lubricants were prepared by spark plasma sintering (SPS). The dry sliding tribological behaviors of TMC against an Si3N4 ceramic ball at room temperature were investigated through the determination of friction coefficients and wear rates and the analysis of the morphologies and compositions of wear debris, worn surfaces of TMC, and the Si3N4 ceramic ball. The results indicated that TMC with 10 wt% (Ti3SiC2-MoS2) lubricants had good tribological properties due to the unique stratification subsurface microstructure of the worn surface. The friction coefficient was about 0.57, and the wear rate was 4.22 × 10?4 mm3 (Nm)?1. The main wear mechanisms of TMC with 10 wt% (Ti3SiC2-MoS2) lubricants were abrasive wear, oxidation wear, and delamination of the friction layer. However, the main wear mechanisms of TMC without Ti3SiC2 and MoS2 lubricants were abrasive wear and oxidation wear. The continuous friction layer was not formed on the worn surfaces. The self-lubricating friction layer on the frictional surface, different phase compositions and hardness, as well as density of TMC contributed to the change in the friction coefficient and wear rate.  相似文献   

18.
Research on the friction layer is needed to minimize friction- and wear-related mechanical failures in moving mechanical assemblies. Dry sliding tribological tests of Ni3Al matrix composites (NMCs) with 1.5 wt% graphene nanoplatelets (GNPs) sliding against different counterface balls are undertaken at the condition of 10 N–0.234 m s?1 in this study. When sliding against GCr15 steel, a uniform and thick friction layer is formed, resulting in a lower friction coefficient (0.29–0.31) and wear rate (2.0–3.1 × 10?5 mmN?1 m?1). While sliding against Al2O3 and Si3N4, the formation and stability of the friction layers are restricted in the severe wear regime, and the NMCs exhibit higher friction coefficients and wear rates. Therefore, various counterface balls have a great effect on the stability and thickness of the friction layer, thus affecting the tribology performance of NMCs. The result also shows that GNPs exhibit enrichment and self-organized microstructures in the friction layer. In addition, the friction layer is also found to be divided into two layers, protecting the subsurface from further damage and reducing shear.  相似文献   

19.
The progress in aerospace field requires a new NiAl matrix composite that can stand against wear and decrease the energy dissipation through decreasing friction. In this study, the tribological behavior of NiAl–1.5 wt% graphene composite is investigated at room temperature under a constant load of 12 N and different sliding velocities. The results show that the friction coefficient and wear rate increase with increasing sliding velocity from 0.2 to 0.4 m/s due to the adhesion between the sliding bodies and tearing of the graphene layer. The friction coefficient and wear rate tend to decrease at a sliding velocity of 0.6 m/s as a result of severe plastic deformation and grain refinement of the worn surface. However, at 0.8 m/s the friction coefficient reaches a minimum value and the wear rate increases and changes the wear mechanism to fatigue wear. It can be concluded that various wear mechanisms lead to different tribological performance of NiAl–1.5 wt% graphene composite.  相似文献   

20.
Abstract

This paper describes the multifactor based experiments that are applied to investigate the dry sliding wear system of aluminium matrix alloy (AA6351) with 5 wt-% silicon carbide (SiC), 5 wt-% and 10 wt-% of boron carbide (B4C) reinforced metal matrix composites (MMCs). Stir casting route was adopted to prepare the composites and the tribological experiments were carried out on pin-on-disc type wear machine. The effects of parameters like applied load, sliding velocity, wt-% of B4C on the dry sliding wear and frictional coefficient of aluminium MMCs using grey relational analysis (GRA) are reported. The orthogonal array with L9 layout and analysis of variance were used to investigate the influence of the parameters. It is observed that the dry sliding friction and wear behaviour of the composites are influenced by the applied load, sliding velocity and wt-% of B4C with a contribution of 60·82%, 21·72% and 14·28% respectively. The optimal design parameters were found by grey relational grade and a good agreement was observed for 95% level of confidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号