首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A silane coupling reagent (3-mercaptopropyl)trimethoxysilane (abridged as MPTS) was self-assembled on a single-crystal Si substrate to form a two-dimensional organic monolayer (MPTS-SAM). The terminal –SH group in the MPTS-SAM film was in-situ oxidized to –SO3H group to endow the film with good chemisorption ability. Then ZrO2 thin films were deposited on the oxidized MPTS-SAM by way of the enhanced hydrolysis of aqueous zirconium sulfate (Zr(SO4)2·4H2O) in the presence of aqueous HCl at 50 °C, making use of the chemisorption ability of the –SO3H group. The thickness of the ZrO2 films was determined with an ellipsometer, while their morphologies and corresponding friction forces were analyzed by means of atomic force microscopy. The hardness and elastic modulus of the ZrO2 thin films were determined on a Nanoindentation II (MET) instrument. The macro-friction and wear behaviors of the ZrO2 films sliding against an AISI-52100 steel ball were examined on a unidirectional friction and wear tester and the worn surface morphologies observed on a scanning electron microscope (SEM). As the results, the as-deposited ZrO2 thin film at a deposition duration of 100 h is about 100 nm thick, it decreases to 48 nm after annealing at 500 °C and further decreases to 45 nm after heating at 800 °C. The as-deposited ZrO2 film is relatively rougher, with the rms to be about 1.0 nm, while the ZrO2 thin films heated at 500 and 800 °C have surface roughness rms of 0.76 nm and 0.68 nm, respectively. The ZrO2 film annealed at 800 °C has a high hardness to elastic modulus (H/E) ratio (0.062) as compared to the as-deposited ZrO2 film and the film annealed at 500 °C. Both the two annealed ZrO2 films show excellent wear-resistance as they slide against AISI-52100 steel at a normal load below 2.0 N, while the one annealed at 800 °C has better wear-resistance. The differences in the friction and wear behaviors of the as-deposited ZrO2 film, the ZrO2 film annealed at 500 °C and that annealed at 800 °C are attributed to their different micro structures and compositions. Since the ZrO2 films was well adhered to the underlying MPTS-SAM, it might find promising application in the surface-protection of single crystal Si and SiC subject to sliding at small normal load in microelectromechanical systems (MEMS).  相似文献   

2.
Lin  Xinhua  Zeng  Yi  Ding  Chuanxian  Zheng  Pingyu 《Tribology Letters》2004,17(1):19-26
Nanostructured and conventional Al2O3-3 wt% TiO2 coatings were deposited by atmospheric plasma spraying. The wear and friction properties of both coatings against a steel ball under dry friction conditions were examined. It was found that the wear resistance of the nanostructured Al2O3-3 wt% TiO2 coating was superior to that of the corresponding conventional counterpart. The improvement in wear resistance of the nanostructured coating was attributed to its higher toughness and cohesion strength between splats. As for the nanostructured coating, the wear mechanism was mainly adhesion with micro-abrasion at low loads (20 N). At high loads (80 N), the wear of the nanostructured coating was controlled by plastic deformation and associated delamination along the splat boundaries, which was similar to that of the conventional coating at low loads. However, the failure of the conventional coating was predominantly brittle fracture within the splats and delamination between splats at high loads.  相似文献   

3.
A HfB2-containing Ni-based composite coating was fabricated on Ti substrates by laser cladding, and its microstructure and tribological properties were evaluated during sliding against an AISI-52100 steel ball at different normal loads and sliding speeds. The morphologies of the worn surfaces were analyzed by scanning electron microscopy (SEM) and three-dimensional non-contact surface mapping. The results show that wear resistance of the pure Ti substrate and NiCrBSi coating greatly increased after laser cladding of the HfB2-containing composite coating due to the formation of hard phases in the composite coating. The pure Ti substrate sliding against the AISI-52100 counterpart ball at room temperature displayed predominantly adhesive wear, abrasive wear, and severe plastic deformation, while the HfB2-containing composite coating showed only mild abrasive wear and adhesive wear under the same conditions.  相似文献   

4.
Friction and wear performance of engine oil were studied in presence of Zinc-dialkyldithiophosphate (ZDDP) and ZDDP–iron fluoride (FeF3) combination using a ball-on-ring wear testing device under boundary conditions. Friction and wear performance of engine oil improves in presence of ZDDP–FeF3 combination. In order to understand the wear mechanisms the microstructure and the chemical composition of wear debris generated during wear process were investigated using TEM together with EDX analyzes. Novel observations on the wear debris generated at different testing loads are presented. Independent of normal loads, amorphous debris containing P, O, Fe and Zn elements and crystalline debris of Fe2O3 are formed. No trace of S is present in amorphous debris under low load (2.32 GPa) conditions while S is a dominating element under high loaded (3.68 GPa) conditions. On the other hand, at lower loads a few iron oxide is formed while at higher loads larger sizes of iron oxides are formed resulting in larger friction and wear.  相似文献   

5.
《Wear》2006,260(4-5):379-386
SiO2, TiO2, and hydroxyapatite (HA) thin films with good biocompatibility were grown on Ti–6Al–4V (coded as TC4) substrate by sol–gel and dip-coating processes from specially formulated sols, followed by annealing at 500 °C The chemical states of some typical elements in the target films were detected by means of X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) and high-resolution scanning electron microscopy (SEM) are applied to characterize the original unworn films. The tribological properties of thin films sliding against an AISI52100 steel ball were evaluated on a reciprocating friction and wear tester. As the result, the target films composed of nano-particles ranging from 30 nm to 100 nm around were obtained. All the sol–gel ceramic films are superior in resisting wear compared with the TC4 substrate. Among all, HA film shows the best resistance while SiO2 film shows the worst wear resistance both under higher (3 N) and lower load (1 N). TiO2 shows good wear resistance under lower load (1 N). SEM observation of the morphologies of worn surfaces indicates that the wear of TC4 is characteristic of abrasive wear. Differently, abrasion, plastic deformation and micro-fracture dominate the wear of ceramic films. The superior friction reduction and wear resistance of HA film is greatly due to the slight plastic deformation of the film. It is supposed that the deformation of the HA film is closely related to the special arrangement of the nano-particles and microstructure. HA film is recommended for clinical application from the point of wear resistance view.  相似文献   

6.
The friction and wear performance of WC-12Co air plasma–sprayed (APS) coating at temperatures of 25–650°C under loads of 8 and 28 N in at atmospheric environment have been studied by a ball-on-disc tribometer. The effect of temperature and load on the tribological behavior of WC-Co coating was investigated. The results show that under a load of 8 N, the wear volume of the coating increases at 250°C due to the coating splat delamination and then it gradually decreases at 350–500°C. The friction could promote the formation of double oxide (CoWO4), which is beneficial to reduce friction and wear. At higher temperatures, the wear volume increases again due to the removal of oxides. Under a load of 28 N, the wear volume of the coating increases enormously at 250°C due to the serious splat delamination. At 350°C, the load promotes double oxide formation, resulting in an early decrease in the coefficient of friction and a rapid reduction in wear volume. Although the wear volume decreases at 350–500°C, it is 10-fold higher than that under a load of 8 N. Above 500°C, the differences of the wear volumes of coatings under the two loads become less obvious, and similar trends also appear for the coefficients of friction. The synergistic effect between the load and temperature on the friction and wear mechanism of WC-12Co APS coating is discussed.  相似文献   

7.
ABSTRACT

The present work focuses on investigating the wear and friction characteristics of the Atmospheric Plasma Sprayed Cr3C2-NiCr coatings deposited onto the surface of die steel material. The as-sprayed specimens were characterized. The coating porosity, bond strength and microhardness values were evaluated. Wear tests were performed on the high-temperature pin-on-disc tribometer at room temperatures, 400°C and 800°C under two loads as 25N and 50N in the laboratory. The wear mechanisms of all the worn-out samples were studied by scanning electron microscopy (SEM) technique. The specific wear rates and the coefficient of friction values were analyzed. The developed coating showed better wear resistance than its uncoated counterpart. The coefficient of friction values for coated specimens decreased at elevated temperatures. At room temperatures, the wear mode was observed to be adhesive and further at elevated temperatures of testing, the wear mode was observed to be the combination of oxidative, adhesive and abrasive.  相似文献   

8.
《Wear》1996,199(2):222-227
The tribological properties of K2Ti4O9 whisker reinforced Al20Si aluminum matrix composites were investigated in a mode of low amplitude reciprocal sliding. The ball-on-disk tests were performed at applied loads of 20–100 N and sliding velocity of 0.09 m s−1. The water lubricated composites demonstrated higher wear resistance and friction coefficient than the tetradecane lubricated composites did. The main wear mechanism is microgrooving at low applied loads and tribochemical wear at high applied loads for the pairs lubricated with water, microgrooving at all test loads for the pairs lubricated with tetradecane.  相似文献   

9.
The friction and wear behaviors of magnetron sputtered MoS2 films were investigated through the use of a pin and disk type tester. The experiments were performed for two kinds of specimens (ground (Ra 0.5μm) and polished (Ra 0.01 μm) substrates) under the following operating condifions: linear sliding velocities in the range of 22 -66 mm/s(3 types), normal loads varying from 9.8-29.4 N(3 types) and atmospheric conditions of air, medium and high vacuum(3 types). Silicon nitride pin was used as the lower specimen and magnetron sputtered MoS2 on bearing steel disk was used as the upper specimen. The results showed that low friction property of the MoS2 films could be identified in high vacuum and the specific wear rate in air was much higher than that in medium and high vacuum due to severe oxidation. It was found that the main wear mechanism in air was oxidation whereas in high vacuum accumulation of plastic flow and adhesion, were the main causes of wear.  相似文献   

10.
Copper matrix composites containing graphite and tungsten disulfide were prepared and tested under the loads of 1–5 N to investigate their friction and wear behaviors. The microstructure, worn surfaces, and cross section of worn subsurfaces were observed, and the lubricating films formed on the worn surfaces were analyzed. It is found that the Cu–24 vol% WS2 composite presents a higher mechanical performance and lower wear rate compared to the Cu–24 vol% graphite composite with same volume fraction of solid lubricant. This could be attributed to the high-strength chemical bonding of the interface between WS2 and the copper matrix. The high-strength interfacial bonding also helps prevent plastic deformation and the formation of cracks at the worn subsurfaces of the composites. The amount of lubricant on the outmost worn surfaces is significantly higher than that in the composite. The lubricating film of WS2 with relatively high thickness provides a low friction coefficient to the composites.  相似文献   

11.
ABSTRACT

This work examines the micrometer-scale wear behavior of pure Mg and its composites at various loads (100–500 mN) under single and multiple scratch conditions. The Mg-0.4Ce alloy reinforced with nanoparticles of zinc oxide (ZnO) and yttrium oxide (Y2O3) is investigated. The effect of reinforcement addition on wear characteristics and the coefficient of friction (COF) was evaluated. Moreover, the influence of number of scratches on wear quantification and wear mechanism was deduced at different loads. The results suggest that both the mechanical and tribological performance of ZnO-reinforced composite is significantly better than that of the Y2O3-reinforced composite, which can be attributed to a low COF and higher strengthening due to ZnO addition.  相似文献   

12.
Ti-based protective thin films with thicknesses below 100 nm, intended for miniature applications were deposited using physical vapor deposition magnetron sputtering. X-ray diffraction (XRD), scanning electron microscopy, and atomic force microscopy were employed for the assessment of microstructure, morphology, film thickness, surface topography, and roughness. XRD pattern showed the formation of f.c.c TiN, TiCN, and TiC phases with different preferred orientations for films prepared in Ar/N2, Ar/N2 + C2H2, and Ar/C2H2 gas mixtures, respectively. Nanotribological performance was investigated using multipass nanoscratch technique at variable applied normal loads (100–400 μN). The nanoscale coefficient of friction was found to be in the 0.08–0.1 range, a sufficiently low value showing the potential of these films for miniature applications, such as microelectromechanical systems. The nanowear resistance at mean contact pressures in the range of 5–8.5 GPa for each sample was evaluated in terms of the average residual wear depth and an abrasive-dominated wear mechanism was found.  相似文献   

13.
The tribological properties of the nano-eutectic Fe1.87C0.13 alloy are investigated under liquid paraffine lubrication against AISI52100 steel ball at room temperature with varied applied load and sliding speed. As comparison, the annealed coarse-grained Fe1.87C0.13 alloy is also examined in the same testing condition. The wear rate of the two alloys increases with increasing applied load and sliding speed. The wear resistance of the nano-eutectic Fe1.87C0.13 alloy is about 2–20 times higher than that of the annealed Fe1.87C0.13 alloy at present experimental conditions. The friction coefficients of the two alloys are almost same. The annealed Fe1.87C0.13 alloy shows serious wear under high applied load and sliding speed. The worn surfaces of the two alloys are analyzed by a scanning electron microscope. With increase in the applied load and sliding speed, the wear mechanism of the nano-eutectic Fe1.87C0.13 alloy is transformed from plowing to fatigue flaking pits, whereas that of the annealed coarse-grained Fe1.87C0.13 alloy is transformed from plowing to fatigue flaking pits then to severe fatigue wear.  相似文献   

14.
A. Mandal  B.S. Murty  M. Chakraborty 《Wear》2009,266(7-8):865-872
Dry sliding wear behaviour of A356–TiB2 composites in T6 condition was tested using a pin-on-disc wear testing machine. The composites were prepared by the reaction of a mixture of K2TiF6 and KBF4 salts with molten alloy. The wear tests were conducted at normal loads of 19.6–78.4 N and a sliding speed of 1 ms?1. A detailed SEM study of wear surface and debris was carried out to substantiate the wear results. The results indicate that wear rate of the composites is a strong function of TiB2 content rather than overall hardness of the composite. The role of Si and TiB2 particles towards the overall mechanism has been discussed.  相似文献   

15.
Tribological properties of a nano-eutectic Fe1.87C0.13 alloy were investigated under distilled-water lubrication against AISI52100 steel ball for various applied loads and sliding speeds. For comparison, the tribological behavior of annealed coarse-grained Fe1.87C0.13 alloy was also examined under the same testing conditions. Worn surfaces of both alloys were analyzed by using a scanning electron microscope (SEM). The wear rate of nano-eutectic Fe1.87C0.13 alloy was on the order of 10−5 mm3/m. The wear rate of nano-eutectic Fe1.87C0.13 alloy was higher than that of annealed Fe1.87C0.13 alloy at lower load, but lower under higher load. The friction coefficients of the two alloys were similar and exhibited a slight increase with increasing sliding speed, but a small decrease with increasing applied load. The wear mechanism of the nano-eutectic Fe1.87C0.13 alloy was transformed from plowing and corrosion wear to slight fatigue cracking with increasing applied load, whereas that of the annealed coarse-grained Fe1.87C0.13 alloy was transformed from plowing and corrosion wear to severe fatigue flaking.  相似文献   

16.
The purpose of this paper is to study the tribology performances of the aC:H(N) films by using a nanotester under different scratch loads and velocities. From the measurements of the friction coefficient and wear volume, the tribological performances including wear resistance and friction coefficients were evaluated for the hydrogenated amorphous carbon films prepared by differing film thickness and nitrogen volume friction in the gas mixture of (C2H2+N2). Taguchi experimental design and the grey relational analysis were used to investigate the influence of specimen parameters (film’s thickness, nitrogen content in the film), and operating conditions in tribological tests (scratch load and scratch velocity) on the friction coefficients and the wear volume arising in the specimens with different coating films. It is found that the wear volume of thin film is increased by increasing either the nitrogen volume fraction or film thickness. Moreover, the optimal combination of the testing parameters was also determined in the use of the present model.  相似文献   

17.
The tribological behavior of the hybrid PTFE/cotton fabric composites filled with microsize Sb2O3 and melamine cyanurate (MCA) was investigated. It was found that the wear rate of the hybrid PTFE/cotton fabric composites decreased when Sb2O3 was used as the filler but increased with MCA filler. It was also observed that hybrid fillers (consists of Sb2O3 and MCA) had a wear reduction effect on the hybrid PTFE/cotton fabric composites at lower loads but increased the wear rate at higher loads. The wear behavior of the composites was explained in terms of the topography of worn surfaces and transfer film formed on the counterpart pin.  相似文献   

18.
Friction and wear behaviors of hydrogenated fullerene-like (H-FLC) carbon films sliding against Si3N4 ceramic balls were performed at different contact loads from 1 to 20 N on a reciprocating sliding tribometer in air. It was found that the films exhibited non-Amontonian friction behaviors, the coefficient of friction (COF) decreased with normal contact load increasing: the COF was ~0.112 at 1 N contact load, and deceased to ultralow value (~0.009) at 20 N load. The main mechanism responsible for low friction and wear under varying contact pressure is governed by hydrogenated carbon transfer film that formed and resided at the sliding interfaces. In addition, the unique fullerene-like structures induce well elastic property of the H-FLC films (elastic recovery 78%), which benefits the high load tolerance and induces the low wear rate in air condition. For the film with an ultralow COF of 0.009 tested under 20 N load in air, time of flight secondary ion mass spectrometry (ToF-SIMS) signals collected inside and outside the wear tracks indicated the presence of C2H3 and C2H5 fragments after tribological tests on the H-FLC films surface. We think that the tribochemistry and elastic property of the H-FLC films is responsible for the observed friction behaviors, the high load tolerance, and chemical inertness of hydrogenated carbon-containing transfer films instead of the graphitization of transfer films is responsible for the steady-state low coefficients of friction, wear, and interfacial shear stress.  相似文献   

19.
In the present research work, an aluminum-based metal matrix composite with in situ Al4SiC4 particles has been developed by the incorporation of TiC particles in commercial aluminum melt through a stir-casting method. Microstructure evaluation in correlation to developed hardness and mechanical properties was performed. Furthermore, the dry sliding wear behavior of commercial aluminum and commercial aluminum–5 vol% Al4SiC4 composite was investigated at low sliding speed (1 ms?1) against a hardened EN 31 disk at different loads. The wear mechanism involved adhesion and microcutting–abrasion at lower loads. On the other hand, at higher loads, abrasive wear involving microcutting along with adherent oxide formation was observed. The overall wear rate increased with load in the alloy as well as in the composite. Moreover, the overall wear rate of the composite was lower than that of the commercial aluminum at all applied loads.` The severe wear region at 39.2 N load in the case of the commercial aluminum–5 vol% Al4SiC4 composite was found to be delayed up to a longer sliding distance compared to commercial aluminum. The in situ Al4SiC4 particles offered resistance to adhesive wear. Accordingly, the commercial aluminum–5 vol% Al4SiC4 composite exhibited superior wear resistance compared to the commercial aluminum.  相似文献   

20.
In order to improve the tribological properties of titanium-based implants, sodium hydroxide (NaOH), hydrogen peroxide (H2O2) solutions, sol–gel hydroxyapatite (HA) film, thermal treatment and combined methods of NaOH solution/HA film, H2O2 solution/HA film are used to modify the surfaces of Ti–6Al–4V (coded TC4). The chemical states of some typical elements in the modified surfaces were detected by means of X-ray photoelectron spectroscopy (XPS). The tribological properties of modified surfaces sliding against an AISI52100 steel ball were evaluated on a reciprocating friction and wear tester. As the results, complex surfaces with varied components are obtained. All the methods are effective in improving the wear resistance of Ti–6Al–4V in different degrees. Among all, the surface modified by the combined method of NaOH solution/HA film gives the best tribological performances. The friction coefficient is also greatly reduced by the modification of NaOH solution. The order of the wear resistance under 3 N is as following: Ti–NaOH–HA>Ti–NaOH>Ti–HA>Ti–H2O2–HA>Ti–H2O2 >Ti–500; under 1 N is Ti–HA, Ti–NaOH–HA>Ti–NaOH. For Ti–H2O2, a very low friction coefficient and long wear life over 2000 passes is obtained under 1 N. SEM observation of the morphologies of worn surfaces indicates that the wear of TC4 is characteristic of abrasive wear. Differently, abrasion, plastic deformation and micro–crack dominate the wear of Ti–HA; slight abrasive wear dominate the wear mechanism of Ti–NaOH and microfracture and abrasive wear for Ti–NaOH–HA and Ti–H2O2–HA, while the sample modified by thermal treatment is characterized by sever fracture. The superior friction reduction and wear resistance of HA films are greatly attributed to the slight plastic deformation of the film. NaOH solution is superior in improving the wear resistance and decreasing the friction coefficient under relative higher load (3 N) and H2O2 is helpful to reduce friction and wear under relatively lower load (1 N). Combined method of Ti–NaOH–HA is suggested to improve the wear resistance of Ti–6Al–4V for medial applications under fretting situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号