首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究碳纤维/聚四氟乙烯(CF/PTFE)、玻璃纤维/聚四氟乙烯(GF/PTFE)复合材料与氮化硅陶瓷配副在海水环境下的摩擦学性能与润滑机制,分析滑动速度对摩擦副海水润滑性能的影响规律。结果表明:在海水润滑条件下,随着滑动速度的增加,PTFE、CF/PTFE、GF/PTFE材料与Si3N4陶瓷配副时的摩擦学性能均有明显改善,摩擦因数与磨损率均呈显著降低的趋势,其中CF/PTFE复合材料表现出更为优异的摩擦学性能,在1 000 r/min滑动速度下摩擦因数低至0.026。磨损表面表征结果表明,在海水润滑条件下,PTFE基复合材料在摩擦过程中由于摩擦化学反应生成了润滑膜,可为摩擦副提供良好的润滑和减磨作用,从而减少摩擦磨损行为的发生。  相似文献   

2.
Polyetheretherketone (PEEK) compounds containing carbon fibres (CF), glass fibres (GF), PTFE, and graphite, respectively, were exposed to unidirectional sliding against various counterparts (100Cr6, X5CrNi18-10, alumina, and bronze). Some of these tests were repeated in water. The stainless steel revealed the best results under dry conditions, whereas alumina was the best counterpart in water. The compound containing GF plus PTFE performed best under dry conditions. Under wet conditions, CF were superior to GF, which react very susceptibly to water. The aqueous environment usually accelerated the compound wear. Only in case of CF containing compounds sliding against alumina, the water lubrication reduced the wear rate.  相似文献   

3.
Carbon fiber (CF) reinforced polyetheretherketone (PEEK) composites were prepared and their tribological behaviors under sea water lubrication were comparatively investigated. The results showed that the incorporation of CF can greatly improve the wear resistance of PEEK under sea water lubrication, especially when the volume fraction of CF was about 10%, because exposed CF can effectively share the main load between the contact surfaces and consequently protect the matrix from severe wear. In addition, CF/PEEK had better friction and wear properties under sea water lubrication than under dry friction and pure water lubrication due to better lubricating effect of sea water.  相似文献   

4.
为改善聚醚醚酮(PEEK)在矿井工况下的摩擦性能,选用纳米二氧化硅(SiO2)、二硫化钼(MoS2)和短切碳纤维(CF)为增强填料制备PEEK/SiO2/CF-MoS2复合材料,并探究PEEK/SiO2/CF-MoS2复合材料在不同工况条件下的滑动与滚动摩擦学性能;通过模拟滚轮罐耳在矿井环境下的运行方式,分析其磨损形貌和磨损机制。结果表明:PEEK/SiO2/CF-MoS2复合材料在不同载荷条件下均具有良好的减摩和耐磨特性;滑动摩擦在水介质工况下及滚动摩擦在干摩擦工况下,复合材料的摩擦因数和磨损率最低,其磨损机制均以磨粒磨损为主。与矿井常用的聚氨酯材料的对比,PEEK/SiO2/CF-MoS2复合材料的摩擦学性能更为优异。  相似文献   

5.
Polyethersulphone (PES), is an amorphous, brittle and high temperature engineering thermoplastic. Two composites of PES containing short glass fibres (GF) and solid lubricants viz. PTFE and MoS2; and two composites containing short carbon fibre (CF) [30% and 40%] were selected for the present studies. Compositional analysis of selected materials was done with various techniques such as gravimetry, solvent extraction and thermal analysis viz. thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). These materials were studied for adhesive and abrasive wear performance by sliding against a mild steel disc and silicon carbide abrasive paper respectively, under different loads. It was observed that GF reinforcement along with incorporation of solid lubricants (PTFE and MoS2) enhanced the wear performance of PES by an order of two. In the case of solid lubricants, PTFE proved to be more beneficial than MoS2. CF reinforcement, however, proved to be the most effective in enhancing wear performance of PES. PES reinforced with 40% CF exhibited a specific wear rate in the order of 10−16m3/Nm which is considered to be very good for the thermoplastic composite. In the case of abrasive wear behaviour, however, incorporation of fibres or solid lubricants deteriorated the performance of the neat matrix. SEM was employed to investigate the wear mechanisms.  相似文献   

6.
Black phosphorus (BP), a newly emerging two-dimensional material, has recently received considerable attention. Our recent work suggested that BP nanosheets exhibit extraordinary mechanical and lubrication properties. In the present work, the tribological properties of polyetheretherketone (PEEK)/polytetrafluoroethylene (PTFE) and carbon fiber (CF)/PTFE composites with BP nanosheets have been investigated. The morphologies and surface element distribution of the worn tracks of the tribopair surfaces were examined by different analytical techniques. The results show that the coefficients of friction (COFs) of both the PEEK/PTFE and CF/PTFE composites decreased dramatically after the addition of BP nanosheets, and the minimum COF of the composite was 0.04, which was a quarter of that of the PTFE composite without BP nanosheets. After BP nanosheets were added into the composites, the wear rate of the PTFE/PEEK composite decreased dramatically, while that of the CF/PTFE composite increased significantly with the increase in the filler concentration. The analysis of the lubrication mechanism of the PTFE composite with BP nanosheets suggested that BP nanosheets could be constantly supplied into the contact area and gradually formed a BP film composed of phosphorus oxide and phosphoric acid on the counterpart surface instead of the formation of PTFE transfer film. The formed BP transfer film promoted the friction reduction and the disappearance of the adhesive wear.  相似文献   

7.
Carbon fibre reinforced Polyetheretherketone (PEEK/CF) was exposed to unidirectional sliding at a speed of 28 mm/s against various counterparts. Some of these tests were repeated in water. The bearing steel produced the worst results. In this case, the carbon fibre reinforcement even increased the wear compared to unreinforced PEEK. Most other counterparts led to wear rates almost a factor 100 lower. Chemically inert hard counterparts performed best. The lowest wear rates were found against DLC. An aqueous environment usually accelerated the wear process. Only in case of alumina and DLC counterparts, the water lubrication reduced the wear rate. The addition of graphite plus Polytetraflourethylene (PTFE) to PEEK/CF reduced the sensitivity to the operation conditions.  相似文献   

8.
Abstract

The wear behaviour of polytetrafluroethylene (PTFE) filled with 25% glass and 40% bronze particles was studied on a pin on disc test rig. Solid lubricant composite materials were prepared by compression moulding technique. The wear parameters considered for the study were applied load, sliding speed and sliding distance. The experimental results indicate that the weight loss increases with increasing load, sliding speed and sliding distance, as expected. Sliding distance has more effect on weight loss followed by applied load. The 40% bronze+PTFE composite exhibits better wear resistance compared to other types. The dominant interactive wear mechanisms during sliding of PTFE and its composites are discussed in this paper.  相似文献   

9.
Jia  J.  Chen  J.  Zhou  H.  Hu  L. 《Tribology Letters》2004,17(2):231-238
The tribological behaviors of the composites of polyetheretherketone (PEEK) reinforced by carbon fiber and polytetrafluoroethylene (PTFE) under distilled-water-lubricated- and dry-sliding against stainless steel were investigated. It was found that the PEEK composite had much better wear-resistance under water-lubricated sliding against stainless steel than under dry-sliding. The transfer film had smaller effect on the tribological behavior of PEEK composite under water-lubricated condition than under dry-sliding, because under water-lubricated condition the cooling and boundary lubricating effects of the water medium dominated the tribological behavior. Moreover, the considerably hindered transfer of the PEEK composite under water lubrication might also account for the decreased wear rate under water lubrication. The PEEK composite was characterized by mild scuffing and fiber protruding under water lubrication, while the plastic deformation and adhesion was significantly abated than under dry-sliding.  相似文献   

10.
The use of ionic liquids (ILs) as lubricants has received increasing attention in recent years. The use of ILs, however, is limited by the corrosion problem and their potential toxic property. Here we present the results of our initial study on the tribological properties of carbon fiber (CF)-filled polytetrafluoroethylene (PTFE) composites, which have an excellent chemical resistance property, lubricated by choline chloride ILs. The difference between choline chloride ILs and water and hydraulic oil as lubricants was studied at the same time, as was the effect of the anion on the lubricating property of choline chloride ILs. The worn surface and transfer film of CF/PTFE composites were studied by scanning electron microscopy. Our results indicate that the lubricating property of choline chloride ILs is much better than that of water and hydraulic oil. The friction coefficient and wear rate of CF/PTFE composites lubricated with ILs were approximately 60 and 50 % lower than those under the dry friction condition. Among the three kinds of ILs tested, the best tribological properties of the CF/PTFE composites were found for those sliding in the mixture of 1,2-propanediol and choline chloride. The worn surface and transfer film of CF/PTFE composites were also much smoother than those under the dry friction, water lubrication, and hydraulic oil lubrication conditions.  相似文献   

11.
G. Zhang  A.K. Schlarb 《Wear》2009,266(1-2):337-344
The tribological behaviors of three poly-ether-ether-ketones (PEEKs) with different molecular weights and their SCF (short carbon fiber)/graphite/PTFE (polytetrafluoroethylene) filled composites were examined using a block-on-ring apparatus under dry sliding conditions. Tensile tests, hardness measurements and dynamic mechanical thermal analysis (DMTA) of the PEEK based materials were also performed. The tribological behaviors of PEEK based materials were correlated with their mechanical properties and the tribological mechanisms were discussed based on scanning electron microscope (SEM) inspections of worn surfaces and wear debris. Under a low apparent pressure, a high material ductility seems to reduce the wear rate of pure PEEK through alleviating the microcutting effect exerted by the protruding regions of the counterpart. Under a high pressure, however, a high stiffness seems to improve the wear resistance of pure PEEK by reducing the plastic flow occurring in the PEEK surface layer. After incorporating SCF/graphite/PTFE fillers, the wear rate of PEEK was decreased significantly. Thinning and cracking of SCF are supposed to be the important factors determining the tribological behaviors of the composites.  相似文献   

12.
The friction and wear properties of polytetrafluoroethylene (PTFE) and its composites with fillers such as bronze, glass fiber, carbon fiber, carbon, graphite, and polymer were studied at ambient temperature and high temperature. The wear resistance and hardness were enhanced by the fillers. Results showed that the wear resistance of all composites was much higher than that of pure PTFE. Pure PTFE has the lowest friction coefficient at ambient temperature (temperature: 23 ± 2°C, humidity: 50 ± 10%) but highest friction coefficient at high temperature (above 100°C). The PTFE composite filled with bronze showed the best wear resistance at ambient temperature but the poorest wear resistance at high temperature. The carbon-graphite- or polymer-filled PTFE composite showed a lower friction coefficient and moderate wear resistance at both ambient and high temperature.  相似文献   

13.
Four polytetrafluoroethylene-based polymer blends (PTFE blends) with polyimide (PI), polyether ether ketone (PEEK), poly(phenyl p-hydroxybenzoate) (PHBA), and perfluoroethylene propylene copolymer (FEP) were prepared by compression molding and follow-up sintering. Their microstructure was observed by scanning electron microscope. And the tribological behaviors of PTFE blends sliding against 316 steel under pure water and sea water lubrication were comparatively evaluated using block-on-ring tribology test rig. The worn surface of counterpart was examined by X-ray photoelectron spectroscopy. The results showed that by blending with the four polymers, PTFE exhibited the transformed microstructure and improved wear resistance. Compared with FEP, rigid polymers PI, PHBA, and PEEK can enhance the wear resistance of PTFE greatly because they can effectively improve the load-carrying capacity of PTFE matrix and can more efficiently prevent the crystalline bands of PTFE from being pulled out. However, because of the weak inhibition on the pulling out of PTFE crystalline bands, FEP cannot enhance the wear resistance of PTFE as significantly as other polymers. In addition, the friction coefficients and wear rates of PTFE and its blends were lower under the lubrication of sea water than under the lubrication of pure water, which was ascribed to more excellent lubricating effect of sea water originating from the deposition of CaCO3 and Mg(OH)2 onto the sliding surfaces.  相似文献   

14.
Cryogenic treatment of polytetrafluoroethylene (PTFE) has proved beneficial in improving the abrasive wear resistance of several polymers, and it was thus assessed in an adhesive wear mode, as well. Preliminary investigations on the effect of cryogenic treatment on the tribological properties, in adhesive wear mode, and mechanical properties of neat PTFE and it composites filled with bronze or short glass fibres (GF) were carried out. It was found that, although the improvement in the wear and friction performance of neat PTFE and a GF + PTFE composite was significant, no such positive effect was observed for the bronze + PTFE composite. On the contrary, this composite showed a deterioration in performance. The reason behind the improvement in the tribological behaviour of neat PTFE and the GF + PTFE composite could not be clearly understood. However, it was confirmed that, if the treatment adversely affected the mechanical properties, then the tribological performance also deteriorated. An examination of the worn surface of the material and the counterface disc using a scanning electron microscope revealed changes in the microstructure due to the treatment. It was also confirmed from these SEM studies that the compatibility of bronze and PTFE was very poor, which led to poor performance of the composite both in the untreated and the cryo‐treated form. Further detailed investigation and analysis of various materials and composites, however, are necessary to establish the utility of this technique.  相似文献   

15.
《Wear》2007,262(1-2):220-224
PEEK is a high strength engineering thermoplastic that suffers from a high friction coefficient and a friction induced wear mode. Past studies with 10 μm PEEK and PTFE powders resulted in composite solid lubricant that (at the optimal composition) had a wear rate of k = 2 × 10−9 mm3/Nm with a friction coefficient of μ = 0.12. A compositional grading of PEEK and PTFE is implemented in this study to create a bulk composite with the functional requirements of component strength, stiffness and wear resistance while providing solid lubrication at the sliding interface. The tribological performances of three functionally graded PEEK components were evaluated on linear reciprocating, rotating pin-on-disk and thrust washer tribometers. Wear rates comparable to samples of the bulk solid lubricant and comparable or improved frictional performance were achieved by compositionally grading the near surface region of PEEK components.  相似文献   

16.
High‐temperature polymers are generally preferred for those tribology applications where cost is secondary and performance is the primary consideration. Since frictional heat dissipation limits the usefulness of polymers because of their poor thermal conductivity, high‐temperature polymers are preferred in applications which have harsh operating conditions. In this paper, a high‐temperature polymer, polyethersulphone (PES), was selected for some adhesive wear studies, along with two PES composites containing 18% glass‐fibre (GF) reinforcement and two solid lubricants, i.e., PTFE and MoS2 (2% each). Adhesive wear studies of these materials on two pin‐on‐disc machines indicated that neat PES was not a good tribo‐material. However, incorporation of GF and solid lubricants enhanced the wear performance by an order of two. PTFE was found to behave better than MoS2. However, after long sliding duration both the lubricants performed almost equally well. The topography of the surface of the pins and the disc was studied using SEM to investigate the wear mechanisms.  相似文献   

17.
Atomic force microscopy and friction force microscopy have been used to conduct microfriction studies on short carbon fiber reinforced PEEK/PTFE composite blends. The relative micro-scale coefficients of friction of different filler particles (PTFE, CF in normal and anti-plane orientation, and graphite) have been compared with the matrix PEEK. The order of the nanoscopic coefficients of friction was: carbon fiber in normal orientation>carbon fiber in plane orientation>PEEK matrix>graphite flake>carbon fiber in parallel orientation>PTFE particle. Additional microhardness studies resulted in qualitative hardness comparisons of the various phases. Their order of the form: carbon fibers PEEK and graphite>PTFE also reflects the contribution of the various phases to the wear resistance of the composite blend. The latter can be estimated from the AFM-topography traces of the polished composite surfaces.  相似文献   

18.
Sintered aluminum bronze friction materials have been successfully used in clutches and breaks for heavy-duty applications, due to their good wear resistance, cold workability, fatigue resistance and corrosion resistance. The aim of the present work is the preparation and investigation of bronze-based composites for components subjected to motion in aqueous environments. Three of bronze-based composites with different amounts of slide additive (graphite) and friction additives (SiC, SiO2) were prepared by powder metallurgy. The microstructure profiles of the obtained composite materials were characterized by uniform distribution of SiC, SiO2 and graphite particles within the bronze matrix. The porosity decreased with increase in the number of pressing and sintering processes. High Vickers hardness values were registered for samples with higher reinforcement contents.A combination of electrochemical and gravimetric techniques was used in this study to assess corrosive wear rates of these materials under neutralized as well as acid rain conditions. Increasing both slide and friction additives improved the corrosion resistance of these bronze composites. Samples with 1.5% graphite, 3% SiO2 and 3% SiC had the highest corrosive wear resistance in neutralized as well as in acid rain due to the high amount of anti-friction and slide additives, in addition to low porosity.  相似文献   

19.
Shangguan Qian-qian  Cheng Xian-hua   《Wear》2006,260(11-12):1243-1247
Carbon fibers (CF) were surface treated with air-oxidation, air-oxidation followed by rare earths (RE) treatment and RE treatment, respectively. The friction and wear properties of the polytetrafluoroethylene (PTFE) composites filled with differently surface treated carbon fibers, sliding against GCr15 steel under oil lubrication, were investigated on a reciprocating ball-on-disk UMT-2MT tribometer. The worn surfaces of the PTFE composites were examined using a scanning electron microscopy (SEM). Experimental results revealed that surface treatment of carbon fibers reduced the wear of CF-reinforced PTFE composites. Among all the treatments to carbon fibers, RE treatment was the most effective and lowest friction and wear rate of CF-reinforced PTFE composite was exhibited, owing to the effective improvement of the interfacial adhesion between the carbon fibers and PTFE matrix.  相似文献   

20.
碳纤维增强聚醚醚酮PEEK450 FC30与工程陶瓷SiC软硬组合作为海水柱塞泵关键摩擦副备选材料,利用MCF 10摩擦磨损试验机对其在海水润滑下的摩擦磨损特性进行试验研究,探讨接触压力、滑动转速对材料磨损率和摩擦系数的影响规律。试验结果表明:在一定范围内的滑动速度、接触压力下,该摩擦副呈现出较小的磨损率和摩擦系数。当滑动速度在0.5~1.5 m/s之间,接触压力为1.33 MPa时,磨损率最小。通过扫描电子显微镜观察摩擦副磨损表层发现,在海水润滑下,SiC磨损并不明显,而PEEK450 FC30的磨损主要是以塑性涂抹为特征的粘着和SiC表面粗糙峰引起的机械犁耕。研究结果对水液压元件的选材具有十分重要的指导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号