首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Fretting fatigue is correlated with plain fatigue in order to develop a method to estimate fretting fatigue life from plain fatigue data. Fretting fatigue experiments as well as plain ones were conducted to obtain fatigue life data at various conditions. Finite element analyses were conducted to evaluate the Smith-Watson-Topper (SWT) fatigue damage parameter around crack initiation location. It is revealed that the SWT in fretting fatigue decays exponentially away from the surface. Moreover, a correlation function exists that relates the gradient of normalized SWT at the surface to the maximum SWT ratio of plain fatigue to fretting fatigue at the same life. It is demonstrated that equivalent SWT for fretting fatigue, which is determined from the correlation function, can be compared directly with plain fatigue data for estimation of fretting fatigue life.  相似文献   

2.
In our previous study, we developed a fretting fatigue life estimation method that considers stress gradient effect [Journal of Mechanical Science and Technology 28 (2014) 2153–2159]. In this method, fatigue damage value at the cracking location is corrected with the factor that is a function of fatigue damage gradient, and the corrected value is treated as the fatigue damage value in plain fatigue for life estimation. In the present study, we examined the effect of mean stress on fatigue damage gradient correction function, because the reliability of the developed method was only verified at a stress ratio (R) of ?1 in previous studies. Fretting fatigue experiments were conducted to obtain the fatigue life data of three different fretting pad shapes with R values ranging from ?1.0 to 0.3. Finite element analyses were then conducted to evaluate the fatigue damage parameter in the cracking region. The results revealed that fretting fatigue life decreases at increased stress ratio. Furthermore, the fatigue damage gradient correction function was unaffected by the stress ratio, although it is affected by plastic deformation at the cracking location. Thus, a correction function for the occurrence of plastic deformation and another for the absence of plastic deformation are necessary. The developed method was demonstrated to predict the fretting fatigue life at various levels of stress ratio with the use of plain fatigue data.  相似文献   

3.
Fretting fatigue is a combination of two complex mechanical phenomena, namely, fretting and fatigue. Fretting appears between components that are subjected to small relative oscillatory motion. Once these components undergo cyclic fatigue load at the same time, fretting fatigue occurs. Fretting fatigue is an important issue in aerospace structural design. Many studies have investigated fretting fatigue behavior; however, the majority have assumed elastic deformation and very few have considered the effect of plasticity. The main goal of this study is to monitor the effect of different fretting fatigue primary variables on localized plasticity in an aluminum alloy (Al 2024-T3) test specimen. In order to extract the stress distribution at the contact interface under elasto-plastic conditions, a modified finite element contact model was used. The contact model was verified through comparison with an elastic analytical solution. Then, a bilinear elasto-plastic isotropic hardening model with a von Mises yield surface was implemented to simulate the material behavior of the aluminum alloy. The effect of different fretting fatigue primary variables, such as axial stress, contact geometry, and coefficient of friction, on localized plasticity was investigated. Finally, the relationship between the location of maximum localized plasticity and Ruiz fretting damage parameter with the crack initiation site is discussed.  相似文献   

4.
Fretting fatigue life of materials can be improved by surface treatment such as shot peening. In this investigation, the effect of multiple re-shot peening on the fretting fatigue behavior of A17075-T6 is studied. After each re-shot peening, the specimen was subjected to 60% of its expected fretting fatigue life. The process of re-shot peening continued until the effect of any further re-shot peening became insignificant. The results showed an increase of 60–70% for the first re-shot peening depending on stress level. The increase, however, was sharply reduced for the next re-shot peenings such that for the third re-shot peening the increase dropped below 10%, which was not as significant. On the whole, the fretting fatigue life increased by 390–410% with respect to the life of virgin specimens depending on the stress level. The results indicated that fretting fatigue life improvement using the 60% of prior life consumption was considerably lower than that obtained for the 80% of expected life as used in previous investigations. An artificial neural network can be employed for estimation of fretting fatigue life at the stress levels not considered in the investigation.  相似文献   

5.
Fretting fatigue tests of the extruded AZ61 magnesium alloy with the same contact material under low and high humidity were carried out to investigate basic fretting fatigue characteristics and effect of humidity on fretting fatigue behavior. Influence of contact material was also studied by using JIS S45C carbon steel contact material. Degradation of fatigue strength due to fretting was much more significant than that due to corrosion under high humidity condition. Therefore, no effect of humidity on fretting fatigue strength was found. Reduction rate of fatigue strength due to fretting for the magnesium alloy was between those of aluminum alloys and titanium alloys. Tangential force coefficient of the magnesium alloy was rather low compared to other materials such as steels, aluminum alloys and titanium alloys. Fretting fatigue strength with the S45C contact material was inferior compared to that with the same contact material. This is mainly due to higher tangential force in AZ61/S45C contact. Fretting fatigue cracks at the edge of fretting contact region were observed to nucleate in the very early stage of fatigue life, similar to other structural materials.  相似文献   

6.
Fretting fatigue is a phenomenon in which two contact surfaces undergo a small relative oscillatory motion due to cyclic loading. There is a need to analyze the effects of contact geometry on crack propagation under fretting fatigue conditions. In this investigation, a finite element modeling method was used to study the effects of different contact geometries along with crack–contact interaction on crack propagation lifetime. Different contacts geometries—that is, cylindrical on flat and flat on flat—along with different contact span widths were analyzed. In addition, the effects of different contact spans on stress distribution at the contact interface were investigated. The computed crack propagation life was compared with experimental results. It was found that the crack initiated near the contact trailing edge for all contact geometries, which agreed with experimental observations. In terms of crack propagation for different contact spans, the fretting fatigue life for a two-based cylindrical pad was shorter than that for a two-based flat pad. By increasing the contact span width for both flat and cylindrical pads, the crack propagation lifetime increased. A comparison between the experimental and numerical results demonstrated a difference of about 18% in crack propagation lifetime.  相似文献   

7.
着重分析了零构件由于微动磨损而造成的疲劳失效机制 ,说明了在这种微动疲劳模式下疲劳寿命的组成情况 ,用门槛值应力公式估算了当磨蚀坑根部萌生扩展性裂纹时蚀坑的临界深度尺寸 ,并分析了微动裂纹尖端的应力强度因子 ,得出了计算微动裂纹萌生尺寸的表达式 ,最后用上述方法计算了螺纹联接件的微动磨损寿命与裂纹萌生尺寸 ,用局部应力应变法计算了微动裂纹的萌生寿命 ,所得到的估测寿命与试验值相符 ,由此可见 ,该微动疲劳寿命的估测方法是合理的、有效的  相似文献   

8.
Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations.  相似文献   

9.
A fretting fatigue life estimation method that takes into account the stress gradient effect was developed by the authors [Journal of Mechanical Science and Technology, 28 (2014) 2153-2159]. In the developed method, fatigue damage value at the cracking location is corrected with fatigue damage gradient and the corrected value is compared directly with the plain fatigue data for life estimation. In other words, the correction factor is the ratio of plain fatigue damage to fretting fatigue damage at the same life and a function of fatigue damage gradient. Since reliability of the method was verified only for cylinder-on-flat contact configuration in the previous study, the present study extends application of the method to flat-on-flat contact configurations by developing the correction factor for both the contact configuration. Fretting fatigue experiments were conducted to obtain fatigue life data for various fretting pads. Finite element analyses were conducted to evaluate the Smith-Watson-Topper (SWT) fatigue damage parameter in the cracking region. It is revealed that the SWT parameter in fat-on-flat contact configuration decreases exponentially away from the surface as in cylinder-on-flat contact configuration, and thus the SWT gradient at the surface can be evaluated reliably. Moreover, it is found that decrease in the SWT parameter around the cracking location can be expressed by piecewise exponential curves. If the gradient of SWT at the surface is used as a representative value of SWT gradient, it is impossible to establish functional relationship between the SWT gradient and the correction factor for both the contact configurations although it was possible for cylinder-on-flat contact configuration. However, if weighted average of the SWT gradient values obtained from each exponential curve in the piecewise exponential curve is used as a representative value, the correction factor for both the contact configurations becomes a function of the SWT gradient, and thus fretting fatigue life in both the contact configurations can be estimated with a single correction function.  相似文献   

10.
Fretting fatigue is a combination of two complex mechanical phenomena. Fretting appears between components that are subjected to small relative oscillatory motions. Once these connected components undergo cyclic fatigue load, fretting fatigue occurs. In general, fretting fatigue failure process can be divided into two main portions, namely crack initiation and crack propagation. Fretting fatigue crack initiation characteristics are very difficult to detect because damages such as micro-cracks are always hidden between two contact surfaces.In this paper Continuum Damage Mechanics (CDM) approach in conjunction with Finite Element Analyses (FEA) is used to find a predictor tool for fretting fatigue crack initiation lifetime. For this purpose an uncoupled damage evolution law is developed to model fretting fatigue crack initiation lifetime at various fretting condition such as contact geometry, axial stress, normal load and tangential load. The predicted results are validated with published experimental data from literature.  相似文献   

11.
Fretting fatigue in 2XXX series aerospace aluminium alloys   总被引:1,自引:0,他引:1  
This research investigated the effects of microstructural characteristics on the fretting response in 2XXX series aerospace aluminium alloys. Fretting fatigue tests were conducted to determine the influence of slip character, alloy purity, grain structure and yield strength on fretting crack nucleation and growth. Crack length measurements and micrographs of the specimens indicated there was no significant difference in the fretting response of these alloys based on their microstructural characteristics. Results also showed that fretting caused cracks to nucleate in the first 1–5% of total life which resulted in much shorter fatigue lives. Additionally, fretting normalized the nucleation time in all alloys, eliminating the differences in intrinsic fatigue nucleation resistance. This resulted in the alloys with the highest stress-life (S–N) fatigue properties exhibiting a greater reduction in fatigue strength under fretting conditions. The total fretting fatigue life appeared to be primarily determined by the fatigue crack propagation resistance of the alloys.  相似文献   

12.
This study investigates the effects of thickness, hardness and composition of modified layer on the plain and fretting fatigue properties of the nitrided 316 L steel plasma nitrided under various processing conditions. Fretting fatigue behaviour of untreated and nitrided material is also analysed with the finite element method. Experimental and theoretical fatigue life results are compared. The result indicates that the nitriding process improved the fretting fatigue properties of 316 L stainless steel. The experimental test results are close to theoretical fretting fatigue life results, thus it yields that the established model in the numerical analysis is consistent in this regard.  相似文献   

13.
《Tribology International》2012,45(12):1979-1986
This study investigates the effects of thickness, hardness and composition of modified layer on the plain and fretting fatigue properties of the nitrided 316 L steel plasma nitrided under various processing conditions. Fretting fatigue behaviour of untreated and nitrided material is also analysed with the finite element method. Experimental and theoretical fatigue life results are compared. The result indicates that the nitriding process improved the fretting fatigue properties of 316 L stainless steel. The experimental test results are close to theoretical fretting fatigue life results, thus it yields that the established model in the numerical analysis is consistent in this regard.  相似文献   

14.
Fretting fatigue is a complex tribological phenomenon that can cause premature failure of connected components that have small relative oscillatory movement. The fraction of fretting fatigue lifetime spent in crack initiation and in crack propagation depends on many factors, e.g., contact stresses, amount of slip, frequency, environmental conditions, etc., and varies from one application to another. Therefore, both crack initiation and propagation phases are important in analysing fretting fatigue. In this investigation, a numerical approach is used to predict these two portions and estimate fretting fatigue failure lifetime under a conformal contact configuration. For this purpose, an uncoupled damage evolution law based on principles of continuum damage mechanics is developed for modelling crack initiation. The extended finite element method approach is used for calculating crack propagation lifetimes. The estimated results are validated with previously reported experimental data and compared with other available methods in the literature.  相似文献   

15.
关于微动磨损与微动疲劳的研究   总被引:18,自引:2,他引:16  
周仲荣 《中国机械工程》2000,11(10):1146-1150
微动磨损与微动疲劳是2种主要的微动模式,造成的损伤在工业中相当普遍,并可能引发灾难性的后果。主要研究了们移幅度、压力和疲劳应力3个基本微动参数,并以获得的微动区域、微动图为基础,分析了微动磨损与微动疲劳的运行机制和破坏规律。为更好地了解微动磨损与微动疲劳之间的内在联系,进一步探讨了接触磨损与局部疲劳、局部疲劳与整体疲劳之间的竞争机制。  相似文献   

16.
TC4合金微动疲劳损伤研究   总被引:1,自引:1,他引:1  
研究了TC4合金在柱面-平面接触务件下的微动疲劳行为,分析了其微动疲劳损伤机制。结果表明:在试验务件下,微动区边缘的损伤特征以粘着磨损为主,而微动区中部则以磨粒磨损和接触疲劳为主。疲劳裂纹易于在微动区.特别是在蚀坑处萌生和扩展。促使微动疲劳裂纹萌生的因素:一是法向应力和切向摩擦力引起的材料表层塑性变形,二是微动磨损破坏了材料的表面完整性,造成了缺口应力集中效应。  相似文献   

17.
Generally the fretting fatigue S-N curve has two regions: one is the high cycle (low stress) region and the second is the low cycle (high stress) region. In a previous paper we introduced the fretting fatigue life estimation methods in high cycle region by considering the wear process; with this estimation method the fretting fatigue limit can be estimated to be the crack initiation limit at the contact edge. In this paper we estimate the low cycle fretting fatigue life based on a new critical distance theory, modified for a high stress region using ultimate tensile strength σB and fracture toughness KIC. The critical distance for estimating low cycle fretting fatigue strength was calculated by interpolation of the critical distance on the fretting fatigue limit (estimated from σw0 and ΔKth) with critical distance on static strength (estimated from σB and KIC). By unifying this low cycle fretting fatigue life estimation method with the high cycle fretting fatigue life estimation method, which was presented in the previous paper, we can estimate the total fretting life easily. And to confirm the availability of this estimation method we perform the fretting fatigue test using Ni-Mo-V steel.  相似文献   

18.
A complete life model for the nucleation and growth of a fretting fatigue crack has been developed. The nucleation of a fretting crack is predicted by superimposing the crack growth rate experienced under fretting conditions onto S–N fatigue data for the alloy. The growth model utilizes small crack growth rate data and a fretting fatigue stress intensity factor to account for the small crack sizes and higher stresses experienced under fretting fatigue conditions. The development of the propagation model within the established fatigue crack growth code AFGROW allows this approach to be readily used by members of the aerospace industry.  相似文献   

19.
微动疲劳易引起钢丝表面磨损和横截面积损失,进而造成钢丝断裂失效并缩短钢丝绳使用寿命。不同微动疲劳参数(接触载荷、疲劳载荷、钢丝直径和交叉角度)引起差异的钢丝微动疲劳磨损特性,故研究微动疲劳参数对钢丝微动疲劳磨损演化规律影响至关重要。基于摩擦学理论和Marc仿真软件构建钢丝微动疲劳磨损模型,探究接触载荷、疲劳载荷、交叉角度和钢丝直径对钢丝微动疲劳磨损演化的影响规律。结果表明:钢丝微动疲劳磨损体积主要与接触载荷和疲劳载荷有关;疲劳钢丝的磨损深度、磨损率及磨损体积随着接触载荷的增加而增大,且不同接触载荷下疲劳钢丝磨损体积均随着循环次数的增加而呈线性增加;随疲劳载荷幅值的增加,疲劳钢丝的磨损深度、磨损率及磨损体积均呈增加趋势;在不同疲劳载荷范围下疲劳钢丝的磨损体积均随着循环次数的增加而呈线性增加;当接触载荷、疲劳载荷及钢丝间摩擦因数相同时,不同交叉角度和不同加载钢丝直径下疲劳钢丝的磨损体积相同。  相似文献   

20.
压印连接是近年来新兴的连接方式,因其具有简单高效、低耗环保等优点,使得在应用连接方面越来越受到重视。疲劳破坏是机械构件失效的主要形式,疲劳过程中的微动磨损是造成零部件失效的主要原因之一。基于以上条件,对铝合金压印接头的疲劳性能进行了试验研究,结果显示疲劳失效部位主要集中在下板靠近压印点处,断口处发现大量微动磨屑,经能谱分析可以确定磨屑成分主要为氧化铝和金属铝;对疲劳失效断口和微动磨损区域进行了扫描电镜分析,发现压印接头的微动磨损部位主要分为两类,并对其进行了定义,一类定义为颈部微动磨损,另一类定义为环点板间微动磨损。分析发现颈部微动磨损所占比例随着外加载荷的大小而变化,且微动磨损是导致压印接头疲劳失效的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号