首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate the tribological behavior of polyethylene crosslinked by gamma radiation sliding against a steel surface. Two high-density polyethylenes were irradiated to a total dose in the range of 2?20 Mrad under vacuum and at room temperature. After irradiation, the materials were annealed at 423 K and then cooled slowly to room temperature. The same thermal treatment was applied to the non-irradiated polymer. The wear behavior of the polymers was determined under controlled ambient temperature of 298 and 333 K using a homemade tribometer. Sheet-shaped specimens were loaded against the surface of a steel disc with different normal loads to generate nominal contact pressures in the range of 0.25–1.5 MPa. The tests were performed under dry conditions using a disc rotation to produce an average sliding speed of 0.6 m/s and during a period of time to provide an average sliding distance of 1,080 m. The wear rate was obtained as the mass loss by the sample divided by the sliding distance, and the friction coefficient was determined by measuring the friction force. The results indicate that the wear rate increases with load in the case of non-irradiated polyethylene and low-dose irradiated polymers, while the wear rate reaches a maximum value with the load in the case of the irradiated samples with high doses. The samples irradiated with a dose of 10 Mrad showed the lowest wear. The coefficient of friction (COF) increases slightly with the load in all the cases. Most irradiated polymers show higher COF than the non-irradiated material when compared at a given load. The results show that the irradiation dose applied to the polyethylenes produced no noticeable effect on the COF values when a comparison was made at a given applied load.  相似文献   

2.
MoS2 metal composite coatings have been successful used in dry turning, but its suitability for dry drilling has not been yet established. Therefore, it is necessary to study the friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes. In the present study, MoS2/Zr composite coatings are deposited on the surface of W6Mo5Cr4V2 high speed steel(HSS). Microstructural and fundamental properties of these coatings are examined. Ball-on-disc sliding wear tests on the coated discs are carried out, and the drilling performance of the coated drills is tested. Test results show that the MoS2/Zr composite coatings exhibit decreases friction coefficient to that of the uncoated HSS in sliding wear tests. Energy dispersive X-ray(EDX) analysis on the wear surface indicates that there is a transfer layer formed on the counterpart ball during sliding wear processes, which contributes to the decreasing of the friction coefficient between the sliding couple. Drilling tests indicate that the MoS2/Zr coated drills show better cutting performance compared to the uncoated HSS drills, coating delamination and abrasive are found to be the main flank and rake wear mode of the coated drills. The proposed research founds the base of the application of MoS2 metal composite coatings on dry drilling.  相似文献   

3.
WS2 and WS2/Zr self-lubricating soft coatings were produced by medium-frequency magnetron sputtering, multi-arc ion plating and ion-beam-assisted deposition technique on the cemented carbide YT15 (WC + 15 % TiC + 6 % Co) substrates. Microstructural and fundamental properties of these coatings were examined. Sliding wear tests against 40Cr-hardened steel using a ball-on-disk tribometer method were carried out with these coated materials. The friction coefficient and wear rates were measured with various applied loads and sliding speeds. The wear surface features of the coatings were examined using SEM. The results showed that the WS-1 specimen (with WS2/Zr composite coating) has higher hardness and coating/substrate critical load compared with that of the WS-2 specimen (only with WS2 coating). The friction coefficient of WS-1 specimen increases with the increase in applied load and is quite insensitive to the sliding speed. The wear rate of the WS-1 specimen is almost constant under different applied loads and sliding speeds. The WS-1 specimen shows the smallest friction coefficient and wear rate among all the specimens tested under the same conditions. The WS-1 specimen exhibits improved friction behavior to that of the WS-2 specimen, and the antiwear lifetime of the WS2 coatings can be prolonged through adding Zr additives. The self-lubricating and wear mechanism of the WS2/Zr coating was also found from the sliding wear tests.  相似文献   

4.
G. Zhang  H. Liao  C. Mateus  C. Coddet 《Wear》2006,260(6):594-600
In this work, polyetheretherketone (PEEK) and PEEK/SiC-composite coatings were deposited on Al substrates using a printing technique to improve their surfaces performance. The objective of this work was to investigate coatings friction and wear behaviour. Especially, the effect of sliding velocity and applied load on coatings friction coefficient and wear rate was evaluated in range of 0.2-1.4 m/s and 1-9 N, respectively. Compared to Al substrate, the coated samples exhibit excellent friction coefficient and wear rate. For PEEK coating, under an applied load of 1 N, the increase in sliding velocity can result in decreasing of friction coefficient at a cost of wear resistance. Under a load of 9 N, however, PEEK coating exhibits the highest friction coefficient and wear rate at an intermediate velocity. These influences appear to be mainly ascribed to the influence of contact temperature of the two relative sliding parts. In most test conditions, the composite coating exhibits better wear resistance and a little higher friction coefficient. SiC reinforcement in composite coating plays a combined role. First of all, it might lead to energy dissipation for activation of fracture occurred on the interface of PEEK and the powders. Moreover, it can reduce coating ploughs and the adhesion between the two relative sliding parts.  相似文献   

5.
The present study evaluates the tribological properties of boride layers on the surface of AISI 4140 steel, formed using the pack-boriding method. Commercial EKabor®2 was used as the boronizing agent and the treatment was carried out at 900, 950, 1000, and 1050 °C for 2, 4, and 6 h, respectively. X-ray diffraction (XRD), scanning electron microscopy (SEM), and microhardness tests were used to characterize the phase composition, microstructure, and local hardness, respectively, of the borided steel samples. Block-on-disc tests were used to investigate tribological properties. Abrasive wear tests were carried out using emery paper at a fixed sliding speed and three different loads. Adhesive wear tests were executed against AISI 52100 steel at a fixed load and distance. The coefficient of friction values (COF) of the samples were determined simultaneously during the tests. The weight loss and COF of the borided samples were compared with untreated samples and the results suggest that both wear resistance and friction properties of the AISI 4140 steel improve with boriding.  相似文献   

6.
Investigations on the dry sliding wear behavior of tungsten carbide (WC)-reinforced iron matrix composites were carried out at room temperature. Three sets of samples (unreinforced iron, 4 wt% micrometer-size (~5–15 μm) WC-reinforced iron and 4 wt% nanosize (~30 nm) WC-reinforced iron were prepared using a powder metallurgy route to assess their friction and wear behaviors under two different loads. The relative dry sliding wear performances of the micrometer-size and nanosize WC-reinforced composites were compared with unreinforced matrix. An increase in microhardness of the order of 2.5 times was observed in the case of 4 wt% nanosize WC-reinforced iron matrix compared to the unreinforced iron matrix. The wear rate was 1.35 to 1.45 times lower in the case of nanocomposites compared to the unreinforced iron matrix (under different experimental conditions). The values of the coefficient of friction (COF) of composites were found to decrease with increase in load. Nanocomposites showed lower COF, surface roughness, and fractal dimension (D) values than micrometer-size WC-reinforced composites and the unreinforced iron matrix.  相似文献   

7.
Titanium (Ti) and Ti-based alloy wear performance is often poor unless coating or lubricants are used. An alternative is to use hard phase reinforcement. Cold spray is a relatively new method to deposit composite coatings, where here we report the deposition of a Ti–TiC coating and its sliding wear behavior. Mixtures of mechanically blended Ti–TiC with various TiC content were injected into a de Laval nozzle and sprayed onto substrates. Two composite coatings and a pure Ti coating are reported here, where the as-sprayed compositions of the composites were 13.8 and 33.4 vol% TiC. Reciprocating dry sliding wear was performed using a custom-built in situ tribometer. All tests were conducted with a sliding speed of 3 mm/s and at a normal load of 0.5 N. Using a transparent sapphire hemisphere of 6.25 mm as counterface, dynamic behavior of third bodies was directly observed. It was found that adhesive transfer of Ti was the primary wear mechanism for the Ti coating, with oxidative and abrasive wear also occurring for longer sliding cycles. The superior wear resistance of the composite coatings compared to Ti was related to dual function of TiC particles, where they reinforced the Ti matrix and facilitated the formation of a stable and protective tribofilms. The tribofilms contained carbonaceous material that provided easier shear and lower friction. The formation of these tribofilms was highly dependent on the TiC particles, which contained excess carbon compared to the equilibrium composition. Higher TiC content was more effective in quickly developing and sustaining the tribofilms.  相似文献   

8.
《Wear》2002,252(7-8):624-634
Alumina/aluminum based composites with excellent physical and mechanical properties offer great potential for lightweight, wear resistant, and high temperature applications. The objective of the present research was to investigate a suitable coating material to provide a low coefficient of friction (COF) during sliding contact. The friction behavior of carbon nanofiber-reinforced aerospace polymer coatings prepared by the spin coating technique were investigated. Polymethylmethacrylate (PMMA), bis A polycarbonate, and two biphenyl endcapped poly(arylene ether phosphine oxide) compositions, namely BPETPP-E and 6FETPP-E, were used as the matrices. Pin-on-disc experiments were performed between 440C stainless steel balls and disc samples of coated alumina/aluminum interpenetrating phase composites at 0.2 m/s sliding velocity, in air, at room temperature under 0.25 and 0.74 N normal load. In all cases, formation of a lubricious carbon layer and its transfer to the steel counterface was observed to result in lower COF (∼0.2–0.3). Higher levels of fiber content (40 and 60 wt.% fibers) contributed to a faster formation of this layer. Wear scar analysis showed the dual roles of the carbon nanofibers, serving as solid lubricants and as reinforcement in the coatings. The amount of debris generated and the coverage of the lubricious carbon-rich film on the scar surface was dependent on the matrix material used. Adherent and uniform coverage of a lubricious carbon-rich film at the wear contact with the least amount of debris fragments was obtained only for composite coatings using BPETPP-E and 6FETPP-E matrices.  相似文献   

9.
MoS2 coatings exhibit low coefficient of friction (COF) when sliding against aluminum; however, the magnitudes of their COF show high sensitivity to environmental conditions. Ti could reduce the sensitivity of the frictional behavior of MoS2 coatings to moisture. This study examines the tribological properties of Ti containing MoS2 coating (Ti–MoS2) tested against an aluminum alloy (Al-6.5% Si) in ambient air (58% relative humidity, RH), dry oxygen, dry air and dry N2 (< 4% RH) atmospheres. The Ti–MoS2 coating exhibited similar COF values under an ambient (0.14), dry oxygen (0.15) and dry air (0.16) atmospheres. It was found that oxidation of MoS2 to MoO3 was responsible for high COF under these testing conditions as revealed by Energy-dispersive X-ray Spectroscopy (EDS) and micro-Raman spectroscopy. However, a low and stable COF of 0.07 was observed under a dry N2 condition. This work further showed that the tests performed at elevated temperatures, up to 400 °C in a dry N2 atmosphere sustained the low and stable COF of the Ti–MoS2 coatings. The sliding tests performed under a dry N2 atmosphere prevented the formation of MoO3 and as a result, the Ti–MoS2 coatings maintained low COF values. Low COF values were also attributed to the formation of MoS2 transfer layers.  相似文献   

10.
The influence of sliding speed on the unlubricated tribological behaviors of silicon nitride–boron nitride (Si3N4-hBN) composites was investigated with two modes in air by a pin-on-disc tribometer. Using the upper disc–on–bottom pin test mode, as the sliding speed increased, the friction coefficient of the sliding pairs showed an upward trend; for example, from 0.18 at the sliding speed of 0.40 m/s to 0.54 at the sliding speed of 1.31 m/s for the Si3N4/Si3N4–20% hBN pair. The surface analysis indicated that a tribochemical film consisting of SiO2 and H3BO3 formed on the wear surfaces of the Si3N4/Si3N4–20% hBN sliding pair at sliding speeds of 0.40 and 0.66 m/s. Moreover, the formation of this film lubricated the wear surfaces. At the sliding speed of 1.31 m/s, no tribochemical film formed on the wear surfaces, most likely due to the increase in surface temperature. In the upper pin–on–bottom disc test mode, the wear mechanism was dominated by abrasive wear, and no tribochemical products could be detected on the wear surfaces. The increase in sliding speed weakened the degree of abrasive wear, leading to a decrease in the friction coefficients.  相似文献   

11.
The aim of the present work is to elucidate the influence of lubricants on the friction behavior of zinc phosphated coatings and provide an explanation for the results in terms of physical–chemical interactions between lubricant and phosphate. The friction behavior was studied through a sliding wear test, with a conventional ball-on-disc configuration. Discs, made of AISI 1006 low carbon steel, uncoated and coated with zinc phosphate, were tested against bearing steel balls. A stearate sodium soap, paraffinic oil and both soap and oil were used as lubricants. The sodium stearate soap was found to have the best seizure resistance. The nature of the interfacial forces between the lubricant and surface has an important role in determining the friction behavior.  相似文献   

12.
J. Perry  T.S. Eyre 《Wear》1977,43(2):185-197
The friction and wear resistance of two commercial manganese phosphate coatings have been evaluated. Grey cast iron wear pins were treated by the two processes and were tested by sliding against a steel disc, under both lubricated and dry sliding wear conditions.Phosphating increases the sliding distance to scuffing as well as the scuffing load, whilst marginally reducing the coefficient of friction. No advantage was found in phosphating dry sliding surfaces.Phosphating reduces the likelihood of adhesive wear in marginal or poorly lubricated sliding couples. The choice of phosphate coating is primarily dependent on the surface finish of the sliding counterface; thin coatings are suitable if the counterface is smooth but thicker coatings are superior against rougher surfaces.  相似文献   

13.
Response surface methodology (RSM) based on a D-optimal design was employed to investigate the tribological characteristics of journal bearing materials such as brass, bronze, and copper lubricated by a biolubricant, chemically modified rapeseed oil (CMRO). The wear and friction performance were observed for the bearing materials tested with TiO2, WS2, and CuO nanoadditives dispersed in the CMRO. The tests were performed by selecting sliding speed and load as numerical factors and nano-based biolubricant/bearing materials as the categorical factor to evaluate the tribological characteristics such as the coefficient of friction (COF) and specific wear rate. The results showed that RSM based on a D-optimal design was instrumental in the selection of suitable journal bearing materials for a typical system, especially one lubricated by nano-based biolubricant. At a sliding speed of 2.0 m/s and load of 100 N, the bronze bearing material with CMRO containing CuO nanoparticles had the lowest COF and wear rate. In addition, scanning electron microscopy (SEM) examination of the worn bearing surfaces showed that the bronze bearing material lubricated with CMRO containing CuO nanoadditive is smoother than copper/brass bearing material.  相似文献   

14.
The progress in aerospace field requires a new NiAl matrix composite that can stand against wear and decrease the energy dissipation through decreasing friction. In this study, the tribological behavior of NiAl–1.5 wt% graphene composite is investigated at room temperature under a constant load of 12 N and different sliding velocities. The results show that the friction coefficient and wear rate increase with increasing sliding velocity from 0.2 to 0.4 m/s due to the adhesion between the sliding bodies and tearing of the graphene layer. The friction coefficient and wear rate tend to decrease at a sliding velocity of 0.6 m/s as a result of severe plastic deformation and grain refinement of the worn surface. However, at 0.8 m/s the friction coefficient reaches a minimum value and the wear rate increases and changes the wear mechanism to fatigue wear. It can be concluded that various wear mechanisms lead to different tribological performance of NiAl–1.5 wt% graphene composite.  相似文献   

15.
In the present study, the sliding wear behavior of pulse-electrodeposited multilayer Ni-Fe coatings as a function of pulse parameters including frequency and duty cycle has been studied using pin-on-disc tests against an Al2O3 counterbody. Sliding wear was investigated with respect to the coefficient of friction (COF), worn surfaces, wear rate, and wear debris. The results of COF with sliding distance revealed a two-region state. At the start of the test the COF was higher, which was due to high stress at the contact region and the occurrence of delamination wear. Then the COF was collapsed as a result of pin penetration and decreased stress at the contact region. The intensity of delamination is decreased at the later stage. The wear resistance of multilayer coatings is increased with increasing frequency and decreasing duty cycles as a consequence of grain refinement and hardness enhancement.  相似文献   

16.
Wear behavior of three kinds of thermally sprayed coatings with similar hardness have been investigated under steady-state and dynamic loading tests. The steady-state loading tests were conducted on a reciprocating sliding device and the dynamic loading tests were conducted with a single-pendulum scratching device. Experimental results show that the wear mechanisms of the coatings under steady-state sliding friction testing are microcutting and microploughing, whereas the material losses under the dynamic impact scratch testing are mainly due to split cutting and fracture. Tribo-oxidization in the sliding process was found to have an influence on the wear behaviors of the thermally sprayed coatings. The results also indicated that wear resistance of thermally sprayed coatings can be correlated to hardness, plasticity, toughness, and cohesion. As far as the coatings of similar hardness were concerned, the wear resistance under steady-state loading was mainly due to the cohesion of the laminar structure of the coatings and the wear resistance under dynamic loading was mainly due to the toughness and deformation compatibility of the coatings.  相似文献   

17.
Epoxy-carbon nanotube (CNT) composites are promising coating materials for wear and corrosion critical applications such as marine bearings, shafts, bolts and gears. However, there are insufficient tribological data available for design. This article described the fabrication and tribological testing of an epoxy-CNT composite coating composed of a commercial epoxy primer and commercial CNT filler. The CNT filler was pre-treated so that it was compatible with epoxy resin and was dispersed using a ball milling process. A reciprocating sliding test rig was built for the measurement of friction and wear of the coatings which were subjected to multi-pass testing using the ball-on-plate sliding geometry. The rig allowed testing with either constant or varying normal force, along with measurement of normal and tangential forces. Thus, the coefficient of friction (COF) under ramping or constant normal force could be determined. Following testing, the samples were examined using an optical microscopy to determine the severity of any galling which had taken place. The coatings were found to display encouraging properties in all aspects of testing. COF values of around 0.2 were recorded under a nominal contact pressure up to 1 GPa. This coating can be used for components which require anti-corrosion and low friction properties.  相似文献   

18.
The wear and sliding friction response of a hybrid copper metal matrix composite reinforced with 10 wt% of tin (Sn) and soft solid lubricant (1, 5, and 7 wt% of MoS2) fabricated by a powder metallurgy route was investigated. The influence of the percentages of reinforcement, load, sliding speed, and sliding distance on both the wear and friction coefficient were studied. The wear test with an experimental plan of six loads (5–30 N) and five sliding speeds (0.5–2.5 m/s) was conducted on a pin-on-disc machine to record loss in mass due to wear for two total sliding distances of 1,000 and 2,000 m. The results showed that the specific wear rate of the composites increased at room temperature with sliding distance and decreased with load. The wear resistance of the hybrid composite containing 7 wt% MoS2 was superior to that of the other composites. It was also observed that the specific wear rates of the composites decreased with the addition of MoS2. The 7 wt% MoS2 composites exhibited a very low coefficient of friction of 0.35. The hardness of the composite increased as the weight percentage of MoS2 increased. The wear and friction coefficient were mainly influenced by both the percentage of reinforcement and the load applied. Wear morphology was also studied using scanning electron microscopy and energy-dispersive X-ray analysis.  相似文献   

19.
The investigation of lubricated friction and wear is an extended study. The aim of this study is to investigate the friction and wear characteristics of double fractionated palm oil (DFPO) as a biolubricant using a pin-on-disk tribotester under loads of 50 and 100 N with rotating speeds of 1, 2, 3, 4, and 5 ms?1 in a 1-h operation time. In this study, hydraulic oil and engine oil (SAE 40) were used as reference base lubricants. The experiment was conducted using aluminum pins and an SKD 11(alloy tool steel) disc lubricated with test lubricants. To investigate the wear and friction behavior, images of the worn surface were taken by optical microscopy. From the experimental results, the coefficient of friction (COF) rose when the sliding speed and load were high. In addition, the wear rate for a load of 100 N for all lubricants was almost always higher compared to lubricant with a load of 50 N. The results of this experiment reveal that the palm oil lubricant can be used as a lubricating oil, which would help to reduce the global demand for petroleum-based lubricants substantially.  相似文献   

20.
In this study, a hydroxyapatite composite coating was prepared by a sol–gel technique on the micro-arc oxidation (MAO)-coated AZ31 Mg alloy to seal the micro-pores. The composite coating achieved a larger hardness value and two times thickness more than pure MAO coating. The corrosion and wear resistance of the sol–gel/MAO coating in simulated body fluid were investigated compared to MAO coating. It was found that the composite coating presented a positive corrosion potential and a lower corrosion current density than MAO coating. The sol–gel/MAO composite coating could provide more effective barrier against corrosive ions than single MAO coating for AZ31 alloy. In the wear tests, a ball-on-disk tribometer was used to study the effect of loads on the wear properties of the coatings at 37 °C. The wear resistance of sol–gel/MAO composite coatings was apparently superior to MAO coating. The wear mechanisms of abrasion and adhesion in composite coatings are investigated. Finally, two physical models for the corrosion and sliding wear mechanisms of sol–gel/MAO composite coatings are proposed, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号