首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
An inverse heat conduction problem (IHCP) was investigated in the two-dimensional section of a pipe elbow with thermal stratification to estimate the unknown transient fluid temperatures near the inner wall of the pipeline. An inverse algorithm based on the conjugate gradient method (CGM) was proposed to solve the IHCP using temperature measurements on the outer wall. In order to examine the accuracy of estimations, some comparisons have been made in this case. The temperatures obtained from the solution of the direct heat conduction problem (DHCP) using the finite element method (FEM) were pseudo-experimental input data on the outer wall for the IHCP. Comparisons of the estimated fluid temperatures with experimental fluid temperatures near the inner wall showed that the IHCP could accurately capture the actual temperature in form of the frequency of the temperature fluctuations. The analysis also showed that the IHCP needed at least 13 measurement points for the average absolute error to be dramatically reduced for the present IHCP with 37 nodes on each half of the pipe wall.  相似文献   

2.
In many dynamic heat transfer situations, the temperature at the heated boundary is not directly measurable and can be obtained by solving an inverse heat conduction problem (IHCP) based on measured temperature or/and heat flux at the accessible boundary. In this study, IHCP in a two-dimensional rectangular object is solved by using the conjugate gradient method (CGM) with temperature and heat flux measured at the boundary opposite to the heated boundary. The inverse problem is formulated in such a way that the heat flux at heated boundary is chosen as the unknown function to be recovered, and the temperature at the heated boundary is computed as a byproduct of the IHCP solution. The measurement data, i.e., the temperature and heat flux at the opposite boundary, are obtained by numerically solving a direct problem where the heated boundary of the object is subjected to spatially and temporally varying heat flux. The robustness of the formulated IHCP algorithm is tested for different profiles of heat fluxes along with different random errors of the measured heat flux at the opposite boundary. The effects of the uncertainties of the thermophysical properties and back-surface temperature measurement on inverse solutions are also examined.  相似文献   

3.
The problem described herein concerns the processing of the time-dependent, internal temperatures within a multithermocouple probe. These are used to compute the temperature of the surrounding fluid, as part of an inverse heat conduction problem (IHCP). The novel achievement in this work is that the exchange coefficients do not have to be supplied a priori, but instead are an additional solution output. Consequently the IHCP is nonlinear and requires significant stabilization. Four methods are applied successively, until a satisfactory solution is found: the parameterization of spatial variations in fluid temperatures and exchange coefficients; a functional specification method (using future time data) to address the noncausal nature of the solution; a lower bound on the exchange coefficient; and a maximum number of iterations at each time step (in accordance with the discrepancy principle).  相似文献   

4.
Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional(1D) and the two-dimensional(2D) inverse heat conduction problem(IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem(DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method(SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases:(1) when the maximum disturbance of temperature of fluid inside the pipe was 3℃,(2) when the maximum disturbance of temperature of fluid inside the pipe was 30℃,(3) when the maximum disturbance of temperature of fluid inside the pipe was 160℃, and(4) when the fluid temperatures inside the pipe were random from 50℃ to 210℃.  相似文献   

5.
The presence of thermocouples inside a heat-conducting body will distort the temperature field in the body and may lead to significant bias in the temperature measurement. If temperature histories obtained from thermocouples are used in the inverse heat conduction problem (IHCP), errors are propagated into the IHCP results. The bias in the thermocouple measurements can be removed through use of appropriate detailed thermocouple models to account for the dynamics of the sensor measurement. The results of these models can be used to generate correction kernels to eliminate bias in the thermocouple reading, or can be applied as sensitivity coefficients in the IHCP directly. Three-dimensional and axisymmetric models are compared and contrasted and a simple sensitivity study is conducted to evaluate the significance of thermal property selection on the temperature correction and subsequent heat flux estimation. In this paper, a high-fidelity thermocouple model is used to account for thermocouple bias in an experiment to measure heat fluxes from solidifying aluminum to a sand mold. Correction kernels are obtained that are used to demonstrate the magnitude of the temperature measurement bias created by the thermocouples. The corrected temperatures are used in the IHCP to compute the surface heat flux. A comparison to IHCP results using uncorrected temperatures shows the impact of the bias correction on the computed heat fluxes.  相似文献   

6.
Abstract

This article proposes a method to construct two series systems for improving the stability of the inverse heat conduction problems (IHCP) in a finite slab. The transfer function between the surface heat flux or temperature and the inner temperature difference is respectively obtained by Laplace transform technique firstly. Then the series systems which can solve IHCP based on the inner temperature difference are constructed by replacing the unsuitable zero and pole points of the transfer function approximated by è approximation. Finally the effects of the series systems are evaluated by a typical example. The results of the evaluation show that this method can obtain the surface heat flux and temperature by the inner temperature difference, and enhance the response speed of the measurement system at the same time. In addition this method can also improve the signal to noise ratio (SNR) of the inverse solutions by selectively amplifying the high SNR parts of the inner temperature difference. The present work provides an effective method to improve the stability of IHCP.  相似文献   

7.
A serial algorithm for the inverse heat conduction problem (IHCP) has been developed to estimate the individual flux components, one by one, at the unknown boundary, based on the function specification method. The sensitivity coefficient defined in this algorithm brings out the influence of the heat flux components independent of each other. The objective function minimizes the difference in the measured temperature and the contribution of the individual flux component to the thermal field at the sensor location. The serial algorithm developed here could be used with data from both overspecified and underspecified sensors with respect to the number of flux components. The method was tested for delineating independent heat fluxes at the boundary of a two-dimensional solid for both space- and time-varying heat fluxes. Simulated thermal histories obtained from direct solution were used as inputs for the inverse problem for characterizing the new algorithm.

Three types of analyses were done on the results of the IHCP, focused on (1) the convergence of error in estimated temperatures at the different sensor locations, (2) overall error in estimated temperatures for the whole domain, and (3) the total heat energy transferred across the boundary. It is shown that the optimum configuration of independent unknown fluxes is given by the one with minimum energy estimates across the boundary, for both cases.  相似文献   

8.
The inverse heat conduction problems (IHCP) analysis method provides an efficient approach for estimating the thermophysical properties of materials, the boundary conditions, or the initial conditions. Successful applications of the IHCP method depend mainly on the efficiency of the inversion algorithms. In this paper, a generalized objective functional, which has been developed using a generalized stabilizing functional and a combinational estimation that integrates the advantages of the least trimmed squares (LTS) estimation and the M-estimation, is proposed. The objective functional unifies the regularized M-estimation, the regularized least squares (LS) estimation, the regularized LTS estimation, the regularized combinational estimation of the LTS estimation and the M-estimation, and the regularized combinational estimation of the LS estimation and the M-estimation into a concise formula. The filled function method, which is coupled with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, is developed for searching a possible global optimal solution. Numerical simulations are implemented to evaluate the feasibility and effectiveness of the proposed algorithm. Favorable numerical performances and satisfactory results are observed, which indicates that the proposed algorithm is successful in solving the IHCP.  相似文献   

9.
A technique is presented for the uncertainty analysis of the linear Inverse Heat Conduction Problem (IHCP) of estimating heat flux from interior temperature measurements. The selected IHCP algorithm is described. The uncertainty in thermal properties and temperature measurements is considered. A propagation of variance equation is used for the uncertainty analysis. An example calculation is presented. Parameter importance factors are defined and computed for the example problem; the volumetric heat capacity is the dominant parameter and an explanation is offered. Thoughts are presented on extending the analysis to include the non-linear problem of temperature dependent properties.  相似文献   

10.
We propose and investigate an application of the method of fundamental solutions (MFS) to the radially symmetric inverse heat conduction problem (IHCP). In the radially symmetric IHCP data on an inner fixed boundary is determined from Cauchy data given on an outer boundary. This is an inverse and ill-posed problem, and we employ and generalize the MFS regularization approach of Johansson et al. (2008) for the time-dependent heat equation to obtain a stable and accurate numerical approximation with small computational cost.  相似文献   

11.
In this paper, we consider a transient inverse heat conduction problem (IHCP) defined on an irregular three-dimensional (3D) domain in pool boiling experiments. Heat input to a circular copper heater of 35 mm diameter and 7 mm thickness is provided by a resistance heating foil pressed to the bottom of the heater. The heat flux at the inaccessible boiling side is estimated from a number of temperature readings in the heater volume. These temperatures are measured by some high-resolution microthermocouples, which are mounted 3.6 μm below the surface in the test heater. The IHCP is formulated as a mathematical optimization problem and solved by the conjugate gradient (CG) method. The arising partial differential equations (PDEs) are solved using the software package DROPS. A simulation case study is used to validate the performance of the solution approach. Finally, we apply the solution approach to the IHCP in pool boiling experiments. The procedure enables the reconstruction of local instantaneous heat flux distribution on the heater surface at different locations along the boiling curve.  相似文献   

12.
In this paper an efficient sequential method is developed in order to estimate the unknown boundary condition on the surface of a body from transient temperature measurements inside the solid. This numerical approach for solving an inverse heat conduction problem (IHCP) takes into account two-dimensional problems, planar or axisymmetric cylindrical, composite materials with irregular boundaries and temperature-dependent thermal properties. The unknown surface condition is assumed to have abrupt changes at unknown times. The regularization procedure used for the solution of the IHCP is based on the singular value decomposition technique. An overall estimate of error is defined in order to find the optimal estimation in the 2D IHCP (linear and non-linear). The stability and accuracy of the scheme presented is evaluated by comparison with the Function Specification Method. This comparative study has been carried out using numerically simulated data, and the parameters considered include shape of input, noise level of measurement, size of time step and temperature-dependent thermal properties. A good agreement was found between both methods. Beside this, the slight differences on estimations and number of future temperatures are discussed in this paper.  相似文献   

13.
In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to estimate the unknown time-dependent heat-transfer rate on the heated surface and coolant fluid velocity in a transpiration cooling process using temperature measurements of the porous medium and coolant fluid. It is assumed that no prior information is available on the functional forms of the unknown heat-transfer rate and coolant fluid velocity; hence the procedure is classified as the function estimation inverse calculation. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation on the time-dependent heat-transfer rate and coolant fluid velocity can be obtained for the test case considered in this study.  相似文献   

14.
This paper presents a seminumerical method for solving inverse heat conduction problems (IHCP) encountered in the monitoring of thermal stresses in pressurized thick-walled elements of steam boilers. The objective is to give a simple and quick method of determining transient temperature histories in thick-walled components based on temperature measurements on the outer thermally insulated surface. The method is suitable for solving one-dimensional problems. However, it can be extended to multidimensional temperature fields. The IHCP will be solved using the control volume approach. The accuracy of the method is demonstrated by comparing computational and experimental results. Gram orthogonal polynomials are used to smooth the measured time-dependent temperature and for evaluating time derivatives of noisy data with high accuracy. Due to the simplicity of the final formulations, the developed method is very useful for estimating the thermal stresses and controlling the fatigue damage of boiler components.  相似文献   

15.
Despite numerous studies of inverse heat conduction problems (IHCP) over the last several decades, their solutions still suffer from the mathematical difficulties and the bottleneck of currently available numerical methods for large-scale problems. In this paper, we present a robust and efficient algorithm for the solution of a specific type of three-dimensional (3D) IHCP commonly involved in various engineering applications. The solution method incorporates the Tikhonov regularization for tackling the severe ill-posedness and the conjugate gradient (CG) method for solving the resulting minimization problems. A model function approach is used to significantly reduce the effort needed to find the optimal Tikhonov regularization parameter. The proposed solution method requires no a priori knowledge of the measurement noise and is much more computationally efficient than the traditional Tikhonov regularization-based inversion approaches. Thus, it can be used for the efficient solution of large-scale practical problems. Two simulation case studies of practical significance are presented to validate and assess the performance of the proposed method. Finally, the solution method is successfully applied to the reconstruction of instantaneous heat fluxes from experimentally measured temperature data.  相似文献   

16.
A solution of the inverse heat conduction problem (IHCP) by the steepest descent method is carried out in order to determine the waste heat flux from a helicon plasma discharge using transient surface temperature measurements obtained from infrared thermography. The infrared camera data is calibrated against thermocouple data and mapped to real locations on the observed surface. The magnitude and distribution of the heat flux to the gas containment tube in the helicon is investigated as the applied power, gas flow rate, magnetic field distribution and neutral gas are varied.  相似文献   

17.
Abstract

Two methods for monitoring the thermal stresses in pressure components of thermal power plants are presented. In the first method, the transient temperature distribution in the pressure component is determined by measuring the transient wall temperature at several points located on the outer insulated surface of the component. The transient temperature distribution in the pressure component, including the temperature of the inner surface is determined from the solution of the inverse heat conduction problem (IHCP). In the first method, there is no need to know the temperature of the fluid and the heat transfer coefficient. In the second method, thermal stresses in a pressure component with a complicated shape are computed using the finite element method (FEM) based on experimentally estimated fluid temperature and known heat transfer coefficient. A new thermometer with good dynamic properties has been developed and applied in practice, providing a much more accurate measurement of the temperature of the flowing fluid in comparison with standard thermometers. The heat transfer coefficient on the inner surface of a pressure element can be determined from the empirical relationships available in the literature. A numerical-experimental method of determination of the transient heat transfer coefficient based on the solution of the 3D-inverse heat conduction problem has also been proposed. The heat transfer coefficient on the internal surface of a pressure element is determined based on an experimentally determined local transient temperature distribution on the external surface of the element or the basis of wall temperature measurement at six points located near the internal surface if fluid temperature changes are fast. Examples of determining thermal and pressure stresses in the thick-walled horizontal superheater header and the horizontal header of the steam cooler in a power boiler with the use of real measurement data are presented.  相似文献   

18.
It has been shown that two inverse heat conduction problems are not always identical despite the dimensionless time steps based on the distance from the heated surface to the sensor are the same. First, the sensitivity to measurement errors is twice for an interior sensor than for a sensor at the insulated surface even if both the dimensionless time steps based on sensor depth and the dimensionless measurement errors are equals. Now, considering an experiment where the dimensional random measurement errors are more likely to be the same for every sensor, the sensitivity to measurement errors is inversely proportional to the sensor depth for a constant dimensionless time step. But it is important to point out that the dimensional time steps are proportional to the square of the sensor depth. Thus the closer the sensor, the smaller the dimensional time step and then the largest the sensitivity to measurement errors. However, the best sensor location for a given dimensional time step and a given dimensional variance in the temperature measurements is near the heated surface. The results presented herein apply to all IHCP algorithms and are of interest for the comparison of IHCP methods. They are only valid when small dimensionless time steps are used which usually is required.  相似文献   

19.
ABSTRACT

In this study a structured multiblock grid is used to solve two-dimensional transient inverse heat conduction problems. The multiblock method is implemented for geometric decomposition of the physical domain into regions with blocked interfaces. The finite-element method is employed for direct solution of the transient heat conduction equation in a Cartesian coordinate system. Inverse algorithms used in this research are iterative Levenberg-Marquardt and adjoint conjugate gradient techniques for parameter and function estimations. The measured transient temperature data needed in the inverse solution are given by exact or noisy data. Simultaneous estimation of unknown linear/nonlinear time-varying strengths of two heat sources in two joined surfaces with equal and different heights is obtained for the solution of the inverse problems, and the results of the present study for unknown heat source functions are compared to those of exact functions. This study is an attempt to challenge the goal of combining a multiblock technique with inverse analysis methods. In fact, the structured multiblock grid is capable of providing accurate solutions of inverse heat conduction problems (IHCPs) in industrial configurations, including composite structures. In addition, the multiblock IHCP solver is suitable to estimate unknown parameters and functions in these structures.  相似文献   

20.
In this paper, we consider a three-dimensional inverse heat conduction problem (IHCP) in a falling film experiment. The wavy film is heated electrically by a thin constantan foil and the temperature on the back side of this foil is measured by high resolution infrared (IR) thermography. The transient heat flux at the inaccessible film side of the foil is determined from the IR data and the electrical heating power. The IHCP is formulated as a mathematical optimization problem, which is solved with the conjugate gradient method. In each step of the iterative process two direct transient heat conduction problems must be solved. We apply a one step θ-method and piecewise linear finite elements on a tetrahedral grid for the time and space discretization, respectively. The resulting large sparse system of equations is solved with a preconditioned Krylov subspace method. We give results of simulated experiments, which illustrate the performance and tuning of the solution method, and finally present the estimation results from temperature measurements obtained during falling film experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号