首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global heat transfer characteristics of submerged jet impingement boiling of a highly wetting dielectric fluid (FC-72) on a heated copper surface are presented. The effect of variation of the jet exit Reynolds number (Re) on boiling incipience, fully developed nucleate boiling, and critical heat flux (CHF) are documented. The jet exit Re is varied by variations of the jet exit velocity and the jet nozzle diameter for a fixed surface diameter. High-speed visualization is used to supplement trends observed in the heat transfer data. Scenarios of low and high incipience wall superheat are identified, corresponding to partially or fully developed nucleate boiling condition upon initiation of boiling. For the high incipience wall superheat scenario, the time of spread of boiling activity over the heated surface during temperature overshoot is found to be inversely proportional to the wall superheat temperature at boiling incipience. The incipient boiling wall superheat temperature is found to be uncorrelated with jet Re and jet diameter. A cumulative probability distribution function is used to characterize the onset of boiling with wall superheat temperature. At a fixed Re, CHF increases with increasing jet velocity and with decreasing jet diameter, indicating that the jet kinetic energy is a key parameter in CHF enhancement. The CHF data are compared with available jet impingement CHF correlations from literature on free surface and confined jets. The free surface jet CHF correlation by Monde and Katto (1978) [1] is seen to best capture the experimental data trends for Re greater than 4000.  相似文献   

2.
The use of a jet from an orifice nozzle with a saddle‐backed‐shape velocity profile and a contracted flow at the nozzle exit may improve the heat transfer characteristics on an impingement plate because of its larger centerline velocity. However, it requires more power to operate than a common nozzle because of its higher flow resistance. We therefore initially considered the use of a cone orifice nozzle to obtain better heat transfer performance as well as to decrease the flow resistance. We examined the effects of the cone angle α on the cone orifice free jet flow and heat transfer characteristics of the impinging jet. We compared two nozzles: a pipe nozzle and a quadrant nozzle. The first one provides a velocity profile of a fully developed turbulent pipe flow, and the second has a uniform velocity profile at the nozzle exit. We observed a significant enhancement of the heat transfer characteristics of the cone orifice jets at Re=1.5×104. Using the cone orifice impinging jets enhanced the heat transfer rates as compared to the quadrant jet, even when the jets were supplied with the same operational power as the pipe jet. For instance, a maximum enhancement up to approximately 22% at r/do?0.5 is observed for α=15°. In addition, an increase of approximately 7% is attained as compared to when the pipe jet was used. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20243  相似文献   

3.
This paper investigated the effects of variable jetting nozzle angles on the cross-flow suppression and heat transfer enhancement of swirl cooling in gas turbine leading edge. The swirl chamber with vertical jet nozzles was set as the baseline, and its flow fields and heat transfer characteristics were analyzed by 3D steady state Reynolds-averaged numerical methods to reveal the mechanism of cross-flow weakening the downstream jets and heat transfer. On this basis, the flow structure on different cross sections and heat transfer characteristics of swirl chamber with variable jetting nozzle angels were compared with the baseline swirl chamber. The results indicated that for the baseline swirl chamber the circumferential velocity gradually decreased and the axial velocity gradually increased, and the cross-flow gradually formed. The cross-flow deflected the downstream jets and drawn them to the center of the chamber, thus weakening the heat transfer. For swirl chamber with variable jetting nozzle angles, the air axial velocity is axial upstream, opposite to the mainstream, so that the impact effects of cross-flow on the jets were reduced, and the heat transfer was enhanced. Furthermore, with the increase of axial velocity along the swirl chamber, the jetting nozzle angle also gradually increased, as well as the effect of cross-flow suppression, which formed a relative balance. For all swirl chambers with variable jet nozzle angles, the thermal performance factors were all larger than 1, which indicated the heat transfer was enhanced with less friction increment.  相似文献   

4.
Impinging jets provide a means of achieving high heat transfer coefficients both locally and on an area averaged basis. The current work forms the first stage of a two part investigation of heat transfer distributions from a heated flat surface subject to an impinging air jet for Reynolds numbers from 10,000 to 30,000 and non-dimensional surface to jet exit spacing, H/D, from 0.5 to 8. In the present paper, the relative magnitudes of the local heat transfer coefficients are compared to the fluctuating components and to the mean and root-mean-square local velocity components. It has been shown that at low nozzle to surface spacings (<2 diameters) secondary peaks in the radial heat transfer distributions are due to an abrupt increase in turbulence in the wall jet. In particular the velocity fluctuations normal to the impingement surface have a controlling influence on the enhancement in the wall jet.  相似文献   

5.
Heat transfer from a moving surface with uniform wall temperature due to impingement of series of slot jets has been investigated numerically. In the present paper, transition–shear stress transport model has been used for numerical simulations, which can predict the heat transfer in laminar as well as turbulent flows. This model is adopted here to study the transport phenomenon and predict the transition from laminar to turbulent flow seamlessly under different surface velocities. The present model with stationary surface is validated with the correlation given by Martin for series of slot jets. It has also shown good agreement with existing data for both laminar and turbulent slot jets, and is further studied to understand the heat transfer under wide range of flow conditions and the effect of surface velocity on flow regime. The range of Reynolds number is from 100 to 5,000, whereas surface velocity varied up to six times the jet velocity at the nozzle exit. It has been observed that at high surface velocities the heat transfer from the moving wall is more than stationary case. The transition from laminar to turbulent regime is found to be starting at a Reynolds number of 400 and turns completely turbulent at a Reynolds number of 3,000. Q-criterion is used to confirm the transition zone by observing the breaking of vortices at higher Reynolds number.  相似文献   

6.
The effects of nozzle geometry and confinement on the potential core and subsequent axial development of a turbulent axisymmetric air jet at a Reynolds number of 22 500 have been studied. Four jet exit conditions, namely, flat and fully developed velocity profiles for unconfined and semi-confined cases were investigated. Mean velocity and turbulence profiles were measured using laser-Doppler anemometry. Liquid crystal thermography used in steady state enabled optimal nozzle to plate spacing to be established for maximum heat transfer. Preliminary results presented here indicate that the length of the potential core is greater for the fully developed jet exit profile and is further extended by semi-confinement. The semi-confinement reduces the stagnation point heat transfer by up to ten per cent.  相似文献   

7.
Impinging jets are a means of achieving high heat transfer coefficients both locally and on an area averaged basis. The temporal nature of both the fluid flow and heat transfer has been investigated for Reynolds numbers from 10,000 to 30,000 and non-dimensional surface to jet exit distance, H/D, from 0.5 to 8. At the impingement surface simultaneous acquisition of both local heat flux and local velocity signal has facilitated a comprehensive analysis of the effect that fluid flow has on the heat transfer. Results are presented in the form of surface heat transfer and fluid velocity signal spectra, and coherence and phase difference between the corresponding velocity and heat flux signals. It has been shown that the evolution of vortices with distance from the jet exit has an influence on the magnitude of the heat transfer coefficient in the wall jet.  相似文献   

8.
Jet impingement onto a conical cavity results in complicated flow structure in the region of the cavity. Depending on the nozzle geometric configurations and jet velocities, enhancement in the heat transfer rates from the cavity surface is possible. In the present study, annular nozzle and jet impingement onto a conical cavity are considered and heat transfer rates from the cavity surfaces are examined for various jet velocities, two outer angles of the annular nozzle, and two cavity depths. A numerical scheme adopting the control volume approach is used to simulate the flow situation and predict the heat transfer rates. It is found that increasing jet velocity at the nozzle exit modifies the flow structure in the cavity while altering the heat transfer rates and skin friction; in which case, increasing nozzle outer angle and jet velocity enhances the heat transfer rates and skin friction.  相似文献   

9.
This paper presents a selection of data from an investigation that was concerned with the heat transfer which occurs when an under-expanded jet impinges onto a heated cylindrical surface. The purpose of the study was to establish the thermal boundary conditions for calculating thermal stresses in heat transfer surfaces when subjected to high-speed cleaning jets. The heat transfer in the impingement zone of a high-speed jet is extremely high and when the presence of the surface interferes with the expansion of the jet, the radial and circumferential distributions of the heat transfer coefficient become complicated. If a highly under-expanded jet impinges upon the surface while the nozzle-to-surface spacing is small, z/D≈3, there is no longer a maximum stagnation heat transfer coefficient on the geometric axis of the jet, instead a stagnation ‘ring’ is formed with a radius of about one nozzle diameter. A selection of data is presented that shows how, particularly for z/D less than 10, the Nusselt number distribution has a very high peak value at, or near to, the geometric stagnation point and then falls away steeply in both the axial and circumferential directions. The high values of Nusselt number, and the large differences between the peak values on the front edge of the cylinder and the values at the rear of the cylinder, could lead to very substantial differential cooling rates and hence to significant thermal stresses being generated when high pressure air cleaning jets are used on high-temperature tubes. However, when the nozzle exit is placed more than 20 nozzle diameters away from the surface of the cylinder there is a significant reduction in the maximum Nusselt number and the overall distribution is much smoother; this will alleviate potential problems from thermal stresses.  相似文献   

10.
Critical design parameters in jet impingement heat transfer like nozzle hydraulic diameter, jet angle and velocity, physical properties of the fluid, and nozzle-to-target plane spacing are the subject. This paper identifies the dominant fluid-thermal characteristics of a pair of rectangular air jets impinging on an inclined surface. Heat transfer modes and flow characteristics are studied with eight different Reynolds numbers ranging from 500 to 20 000. Local and average Nusselt numbers are evaluated with two different boundary conditions on three specified lines located on the inclined surface. The correlation between stagnation Nusselt number and Reynolds number is presented. Turbulent intensity and wall y+ distributions are compared on three lines parallel to the incline. The effect of jet impingement angle on local and average Nusselt number is also documented. Finally, a correlation between the average Nusselt number, nozzle exit Reynolds number and the jet angle is documented.  相似文献   

11.
INTR0DUCTI0NWhenliquidjetsverticallyimpingeonahorizontalplane,theliquidspreadsoverthesurfaceasathinlayerboundedbyahydraulicjumpbeyondwhichthedepthoftheliquidismuchgreater.Totheauthor'sknowledge,thehydraulicjumphasbeenprovedtooc-curwheneverthefilmspreadsfarenough.Itischarac-terizedbyasignificantreductioninfilmaverageveloc-ityandacorrespondinglysharpincreaseintheliquidfilmthickness.Asinallconvectiveheattransfersituations,theflowfieldofanimpingingliquidjetcontrolstheheattransfercharacteristic…  相似文献   

12.
小喷嘴间距撞击流的径向射流速度分布   总被引:2,自引:0,他引:2  
采用热线风速仪对小喷嘴间距撞击流产生的径向射流的速度分布进行了实验研究.研究结果表明,径向射流在各个r.2D的径向断面上的速度分布具有相似性,呈高斯分布.在撞击面上无因次径向射流速度随着无因次径向距离的增大先增大后减小,而与喷嘴直径(D)、喷嘴间距(L)和出口气速无关.无因次径向速度在达到最大值前,与无因次径向距离成正比,在达到最大值后,无因次径向速度与无因次径向距离的1.33次方成反比.在撞击面上径向射流速度的最大值与出口气速成正比,与无因次喷嘴间距的0.551次方成反比.当L/D1时,无因次最大径向速度的位置随无因次喷嘴间距的增加而增加,当L/D1时,无因次最大径向速度的位置保持不变.  相似文献   

13.
In this work, heat transfer from a moving surface due to series of impinging slot jets under laminar conditions has been optimized. For this study numerical investigations were carried out initially using Ansys Fluent 14 and these results were used to train an artificial neural network (ANN). This trained network was integrated into Micro-Genetic Algorithm to get the optimum parameters for better heat transfer from the surface, an optimization procedure proposed by Madadi and Balaji. Pitch of the jets (P), height of the jets (H) and the non-dimensional surface velocity (Vs) were chosen as dependent variables for optimum heat transfer. 99 simulations were performed by changing above parameters for each Reynolds number, Re of 100 and 200 were used for case study. Imposition of surface velocity strongly affects the heat transfer magnitude and distribution following a change in flow structure. The performance of Micro-Genetic Algorithm (μGA) was also compared with standard Genetic Algorithm (GA); it shows that μGA reaches optimum in less than half the time of standard GA. The optimum results show that the pitch of the jets, height of the jets and surface velocity should be as low as possible.  相似文献   

14.
Confined swirling jet impingement onto an adiabatic wall   总被引:1,自引:0,他引:1  
Impinging swirling jets generate interesting flow fields and depending on the magnitude of the swirl velocity, circulation cells develop in the region close to the solid wall. Moreover, axial momentum of the jet is influenced by the magnitude of the swirl velocity. This, in turn, results in considerable entropy generation in the flow field. In the present study, confined swirling jet impingement onto an adiabatic wall is investigated. The flow and temperature fields are computed numerically for various flow configurations. Different jet exit velocity profiles are considered and their effects on the flow field are examined. The entropy production due to different flow configurations is computed and the irreversibility ratios due to fluid friction and heat transfer are determined. It is found that the jet axis tilts towards the radial direction as swirl velocity increases and reducing the velocity profile number enhances the entropy generation due to heat transfer. The irreversibility ratio variation with the velocity profile number behaves opposite for the fluid friction and heat transfer.  相似文献   

15.
An investigation was carried out to study the effect of flow pulsation on the characteristics of a planar air jet impinging normally on a heated surface. Such information was further utilized to determine the influence of flow characteristics in the plane of impingement on Nusselt number distribution. Time-resolved system properties were investigated with modern instrumentation that allowed instantaneous heat transfer and flow velocity measurements to be performed simultaneously. Based on good coherence function estimates between the signals, heat transfer measurements were used in return to infer flow dynamics near the impingement surface. Experiments were performed for steady and pulsating jets at jet Reynolds numbers of 1 000, 5 500, and 11 000, pulse frequencies up to 82 Hz (corresponding to Strouhal numbers below 0.13), and pulse amplitude at the nozzle exit up to 50 % of the mean flow velocity. Special techniques commonly used for periodically disturbed flow fields elucidated the dynamics of the pulse and associated coherent flow structures. Results indicated the parametric conditions for which alterations are expected in time-averaged heat transfer from the surface. Engineering applications include cooling of electronic packages and heat transfer to gas turbine blades.  相似文献   

16.
Impinging jets may be used to achieve enhanced local heat transfer for convective heating, cooling, or drying. The issuing jet may contact the surface normally or obliquely. Factors such as jet attachment, surface angle, jet angle and size, separation distance between jet orifice and surface of impingement, and trajectory influence heat transfer dramatically. This study addresses the thermal problem of jet impingement on an inclined surface and is motivated by the practical application of air jets issuing out of a defroster’s nozzles and impinging on the inclined windshield surface of a vehicle. The effects of incoming fluid velocity, openings’ geometry (circular vs. rectangular), number of openings, angle that the inclined surface makes with the horizontal plane and angle of impinging jet on heat transfer are examined. Fluid mechanics and heat transfer characteristics are exhibited in details for a configuration with three rectangular openings. A comparative study for other configurations is also featured. The results are correlated in terms of governing dimensionless parameters through numerically-based correlations that are useful for predicting heat transfer on an inclined surface subject to impinging airflow.  相似文献   

17.
This experimental study focuses on generation and control of annular impinging jets. The annular nozzle used in the investigations was designed with an active flow control system using 12 synthetic jets issuing radially from the central nozzle body. Measurements of the control effects were made on the impingement wall. The data acquisition involved wall pressure and wall mass transfer (by the naphthalene sublimation technique) using air as the working fluid. Also measured was time-mean flow velocity (by a Pitot probe) in the jet flow field. Moreover, flow visualization was carried out. Two main flow-field patterns (A and B) were identified. The patterns differ in the size of the separated-flow recirculation regions that develop attached to the nozzle central body: While pattern A is characterized by a quite small recirculation region (bubble) extending not far from the nozzle exit, pattern B exhibits a large recirculation region, reaching up to the impingement wall, on which it forms a stagnation circle. The control action modifies the flow field, resulting in changes of the corresponding heat/mass transfer distributions. The convective transfer rate on the stagnation circle can be demonstrably enhanced by 20% at a moderate nozzle-to-wall distance, equal to 0.6 of the nozzle outer diameter.  相似文献   

18.
In this research, boiling heat transfer on a hot moving plate caused by multiple impinging water jets in multiple jet rows is studied. An inverse heat conduction code is developed to analyze the readings of thermocouples that are implemented inside the plate in order to find the surface values of temperature and heat flux. Effects of nozzle stagger, plate velocity, and jet line spacing are studied. Nozzle stagger is found to affect the uniformity of heat transfer across the width of the plate. Jet line spacing can affect the heat transfer between two adjacent jet rows. Plate speed is important only in the higher entry temperatures and in the impingement zone.  相似文献   

19.
Impingement transfer coefficients due to initially laminar slot jets   总被引:1,自引:0,他引:1  
The transfer coefficients resulting from the impingement of a slot jet on a plane surface have been measured by the naphthalene sublimation technique. The experiments were performed with jets that are laminar at the exit of the duct from which the jet issues. In addition, the velocity profiles at the duct exit were fully developed. Distributions of the local mass-transfer coefficient on the impingement surface were determined for five Reynolds numbers and at five separation distances between the duct and the surface. The mass-transfer results can be converted to heat-transfer results by using the heat-mass transfer analogy.It was found that the transfer coefficients generally tended to decrease with increasing separation distance, but there was evidence of non-monotonic behavior owing to the opposite influences of mixing-induced turbulence and diminished jet velocity. Increases in Reynolds number tended to increase the transfer coefficients, and the stagnation point values were correlated with a 0·6-power dependence. The surface distributions of the transfer coefficient were bell-shaped, with the largest value at the stagnation point. Comparisons with available literature suggested that the shape of the initial velocity profile has a significant effect on the transfer characteristics of the impingement surface.  相似文献   

20.
An experimental study was conducted to investigate the effects of axial forcing on the flow structures near the nozzle exit in coaxial isothermal jets and jet diffusion flames. The jet was excited by adding a periodic velocity fluctuation ranging from 0 to 400% of the mean jet velocity at the tube resonating frequency. The phase-averaged axial velocity fluctuation at the jet centre was measured with a one-component LDV and phase-locked visualization using a light chopper and a phase-conditioning circuit was performed. The changes of large-scale structures in the near field of the jet are described from the visualization of horizontal and vertical cross-cut Mie scattering images. The flow structures of the forced isothermal jet are classified into three regions on the basis of the emergence of azimuthal structures and the periodic behaviour of vortex structures. The jittering of azimuthal structures was characterized by a forcing amplitude ratio and the velocity difference between the jet and the co-flowing fluid. In case of the forced reacting jet, flame heights were measured from video tape recordings of the sooting images of the flame. The dependence of flame height on the forcing amplitude ratio shows the existence of a flame-length elongation and reduction region. The flame elongation is found to be related to the suppression of the flame flickering by forcing. From the Mie scattering images and flame-length measurements, it is suggested that the intense mixing observed in the fully forced laminar jet and the reduction of the flame length is closely related to the development of azimuthal structures. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号