首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of asymmetrical tetraalkylphosphonium ionic liquids were synthesized and evaluated as a new kind of lubricant for the contact of steel/steel using an Optimol SRV oscillating friction and wear tester in ambient condition. The phosphonium ionic liquid shows excellent tribological performance when being used as the lubricating oil, and is superior to the conventional high temperature lubricants X-1P and perfluoropolyether (PFPE) in terms of anti-wear performance and load-carrying capacity. The chemical compositions of the boundary film generated on different contact surfaces were analyzed on a scanning electron microscope with a Kevex energy dispersive X-ray analyzer attachment (SEM/EDS) and X-ray photoelectron spectrometer (XPS). The friction–reduction and anti-wear mechanism of tetraalkylphosphonium as the lubricant were proposed to originate from the active elements P in the tetraalkylphosphonium ionic liquids reacting with the fresh surface to form a reaction film onto specimen surface, an extreme-pressure film with lower shearing strength, which leads to lower friction coefficient, and good wear resistance.  相似文献   

2.
The lubricating properties of two ionic liquids (ILs) with the same anion but different cations, one ammonium IL [C8H17]3NH.Tf2N and one imidazolium IL C10mim.Tf2N, were evaluated both in neat form and as oil additives. Experiments were conducted using a standardized reciprocating sliding test with a segment of a Cr-plated diesel engine piston ring against a gray cast iron flat specimen. The cast iron surface was prepared with simulated honing marks as on a typical internal combustion engine cylinder liner. The selected ILs were benchmarked against conventional hydrocarbon oils. Substantial friction and wear reductions, up to 55% and 34%, respectively, were achieved for the neat ILs compared to a fully formulated 15W40 engine oil. Adding 5 vol% ILs into mineral oil has demonstrated significant improvement in the lubricity. One blend even outperformed the 15W40 engine oil with 9% lower friction and 34% less wear. Lubrication regime modeling, worn surface morphology examination, and surface chemical analysis were conducted to help understand the lubricating mechanisms for ILs. Results suggest great potential for using ionic liquids as base lubricants or lubricant additives for diesel engine applications.  相似文献   

3.
The investigation of lubricated friction and wear is an extended study. The aim of this study is to investigate the friction and wear characteristics of double fractionated palm oil (DFPO) as a biolubricant using a pin-on-disk tribotester under loads of 50 and 100 N with rotating speeds of 1, 2, 3, 4, and 5 ms?1 in a 1-h operation time. In this study, hydraulic oil and engine oil (SAE 40) were used as reference base lubricants. The experiment was conducted using aluminum pins and an SKD 11(alloy tool steel) disc lubricated with test lubricants. To investigate the wear and friction behavior, images of the worn surface were taken by optical microscopy. From the experimental results, the coefficient of friction (COF) rose when the sliding speed and load were high. In addition, the wear rate for a load of 100 N for all lubricants was almost always higher compared to lubricant with a load of 50 N. The results of this experiment reveal that the palm oil lubricant can be used as a lubricating oil, which would help to reduce the global demand for petroleum-based lubricants substantially.  相似文献   

4.
This work aims to study and understand the influence of the surface topography on wear of grey cast iron used for heavy duty diesel engine cylinder liners. A micro-alloyed grey cast iron was tested with different surface topographies. These were polished surfaces, honed surfaces (with two different honing parameters) and three model surfaces with well defined grooves on a polished specimen.Reciprocating friction tests using a steel ball rubbing against a flat or a cylindrical sample (extracted from a cylinder liner) were carried out on a Cameron Plint test rig. A commercial synthetic oil for diesel engine was used as the lubricant. The friction coefficient and the electrical contact resistance were measured during the tests. The wear volume of the cylinder liner part was also measured at the end of the test.The influence of the surface topography on the tribochemical film formation and on the wear behaviour of cast iron was established. Surfaces exhibiting lots of surface asperities had the highest wear, mainly due to delayed formation of protective tribochemical film. In our test conditions, the spacing between the grooves on model specimens had no influence on the wear behaviour of the cast iron specimens.  相似文献   

5.
TiN and TiAlN thin hard coatings have been widely applied on machine components and cutting tools to increase their wear resistance. These coatings have different wear behaviors, and determination of their wear characteristics in high-temperature and high-speed applications has great importance in the selection of suitable coating material to application. In this article, the wear behavior of single-layer TiN and TiAlN coatings was investigated at higher sliding speed and higher sliding distances than those in the literature. The coatings were deposited on AISI D2 cold-worked tool steel substrates using a magnetron sputtering system. The wear tests were performed at a sliding speed of 45 cm/s using a ball-on-disc method, and the wear area was investigated at seven different sliding distances (36–1,416 m). An Al2O3 ball was used as the counterpart material. The wear evolution was monitored using a confocal optical microscope and surface profilometer after each sliding test. The coefficient of friction and coefficient of wear were recorded with increasing sliding distance. It was found that the wear rate of the TiAlN coating decreases with sliding distance and it is much lower than that of TiN coating at longer sliding distance. This is due to the Al2O3 film formation at high temperature in the contact zone. Both coatings give similar coefficient of friction data during sliding with a slight increase in that of the TiAlN coating at high sliding distances due to the increasing alumina formation. When considering all results, the TiAlN coating is more suitable for hard machining applications.  相似文献   

6.

In the present time, need of biogenic lubricants is the focusing area which will be biodegradable, avirulent and eco-friendly. Current experimental tests depict the effect of ‘Phyllanthus emblica’ a non-edible feedstock through pin on disc tribo tester. Tests were conducted to evaluate the impact of 0, 10, 20 and 30 % blending of Phyllanthus emblica with SAE20W40 lubricating oil on cylinder liner and piston ring. Promising results have been manifested with 10 % blending of biodiesel (BD) with lubricating oil in terms of coefficient of friction and specific wear rate in comparison with other examined feedstock. For analysis of wear debris in the used oil analytical ferrography was also done. The effects of temperature on wear and friction characteristics have also been discussed.

  相似文献   

7.
固体润滑剂在轴承上的应用研究   总被引:2,自引:2,他引:2  
以水轮发电机轴承为应用研究实例,介绍了轴承镶嵌固体润滑剂的摩擦磨损机理,镶嵌轴承套的结构,固体润滑剂材料;并用摩擦学性能试验及台架模拟试验验证;在水轮发电机轴承上使用固体润滑剂可以提高润滑性能、降低摩擦系数,使摩擦副间能不断形成自补偿固体润滑转移膜,说明在重载,低速,摆动,间歇运动和泥水环境苛刻条件下工作的水轮发电机轴承使用固体润滑剂,比液体润滑具有更优越的性能。  相似文献   

8.
Microwear mechanisms of single-crystal silicon (111) in water vapor have been investigated. A diamond pin with a radius of 10 μm was used as a pin specimen. All tests were carried out in the chamber of environmental scanning electron microscopy (ESEM), with which contact point could be observed simultaneously during the sliding test. The water vapor pressure was changed from 40 Pa (0.3 Torr) to 2667 Pa (20 Torr). Three different wear modes were observed in the tests and consolidated as wear mode diagram according to initial maximum Hertzian contact pressure and friction coefficient. These wear modes are

A No removal of material

B Microcutting of feather-like wear particles

C Fracture

Corresponding to these wear modes, the friction coefficients are 0.07 ~ 0.13 in Wear Mode A, 0.19 ~ 0.23 in Wear Mode B and 0.16 ~ 0.18 in Wear Mode C. Transitions of wear mode are not influenced by water vapor in the range of 40 ~ 2667 Pa. Friction coefficient changes by the change of water vapor pressure in Range A but does not change in Ranges B and C.  相似文献   

9.
含超细颗粒固液二相流对PSZ陶瓷与钢摩擦磨损特性的影响   总被引:4,自引:0,他引:4  
在往复式摩擦磨损试验机上研究了含超细颗粒固液二相流对部分稳定二氧化锆(PSZ)陶瓷与GCr15钢滑劝副的摩擦磨损性能的影响。选择90^#机械油和QC30汽机油为基础油,分别加入五种超细固体颗粒,配制出不同浓度的20种油样,分别在160170和100℃温度下进行试验。结果表明:超细固体颗粒添加剂的用量、试验温度和基础油都影响陶与钢滑动副的摩擦磨损性能。对超细颗粒添加剂的润滑机理进行了初步探讨。  相似文献   

10.
Abstract

In recent years, there has been much attention on the effects of lubricant additives on the friction and wear properties of surface coatings. However, little research has been conducted to investigate the influence of antiwear additives on the tribological performances of titanium nitride (Ti–N) and titanium aluminium nitride (Ti–Al–N) coatings. It has been reported that introducing aluminium into Ti–N coatings enhanced their oxidation resistance. In this study utilising a pin on cylinder tribometer, lubricants containing zinc dialkyl dithiophosphate (ZDDP) or a more environmentally friendly alternative, ashless triphenyl phosphorothionate (TPPT), were used. Experimental results revealed that ZDDP and TPPT helped to reduce wear on both coatings through the formation of a tribofilm, although it was also found that both additives increased the friction coefficient on both surfaces. Based on overall findings, this paper suggests the use of TPPT as a suitable ZDDP replacement for providing wear protection on Ti–N and Ti–Al–N coatings.  相似文献   

11.
The structure and micromorphology of wear debris of MC nylon 6 under dry sliding were investigated by FTIR, XRD, DSC, and FESEM, and the 3D surface topographies of friction materials before and after the friction test were observed, which will be helpful in understanding the friction and wear processes. The primary crystalline phase of both the unworn MC nylon 6 and the wear debris were α crystal, but the crystallinity of the latter was higher than that of the former. The proportion of α 2 (002 + 202) planes increased and the reflection from the α 1 (200) planes was suppressed in the wear debris, indicating a preferential arrangement of α 2 (002 + 202) on the surface of the wear debris. The transition in structure of the wear debris originated from the activation of the chain segments due to the thermodynamic effects. The thermodynamic effects and high chain segment mobility resulted in the hydrogen bonding whose interchain distance is a larger rupture or even chain scission. MC nylon 6 was severely worn due to the contribution of the tearing force that resulted from the combined action of the tribo-interface adhesion and the shearing effect during friction, whereas no damage happened on the worn surface of the counterpart steel pin even if under severe sliding conditions.  相似文献   

12.
High‐temperature‐resistant self‐lubricating coatings are needed in space vehicles for components that operate at high temperatures and/or under vacuum. Thick composite lubricant coatings containing quasicrystalline alloys as the hard phase for wear resistance can be deposited by a thermal spray technique. The coatings also contain lubricating materials (silver and BaF2 CaF2 eutectic) and NiCr as the tough component. This paper describes the vacuum tribological properties of TH103, a coating of this type, with a very good microstructural quality. The coating was deposited by high‐velocity oxygen fuel spraying and tested under vacuum using a pin‐on‐disc tribometer. Different loads, linear speeds, and pin materials were studied. The pin scars and disc wear tracks were characterised using a combination of scanning electron microscopy and energy dispersive spectrometry. A minimum mean steady friction coefficient of 0.32 was obtained when employing an X750 Ni superalloy pin in vacuum conditions under 10 N load and 15 cm/s linear speed, showing moderate wear of the disc and low wear of the pin.  相似文献   

13.
The niobized layer was formed on Q235 low-carbon steel by double-glow plasma surface niobizing to improve its wear resistance. The microstructure, phase composition, and microhardness were determined. The friction and wear properties of the niobized samples and the untreated alloys were tested on a ball-on-disk tribometer by rubbing against GCr15 and silicon nitride (Si3N4) balls at room temperature and 400°C, respectively. The results indicated that the alloyed layer that contained a sediment layer and diffusion layer is about 35 μm in thickness, metallurgically adhered to the base metal. Niobium content was gradually decreased along the depth direction from the surface, which was similar to the change in the microhardness. The alloying layer mainly consisted of Nb, Fe2Nb, and FeNb phases. Under unlubricated sliding conditions, the friction coefficients and the specific wear rates were lower than those of the untreated carbon steel at room and high temperatures. The wear mechanism of the niobized specimen at room temperature is dominated by slightly abrasive wear, whereas the predominant wear mechanism is abrasive wear and fatigue delamination at high temperature.  相似文献   

14.
采用往复振动机模拟小型二冲程发动机运转工况,实验研究汽油和甲醇为燃料时发动机气缸和活塞环间的摩擦特性,并比较分别使用润滑油新油、润滑油老化油、润滑油新油和老化油的混合油作为润滑油时气缸和活塞环间的摩擦特性。结果表明,以甲醇为燃料时的摩擦因数和磨损量均小于以汽油为燃料时的摩擦因数和磨损量,特别是使用添加了润滑油新油的燃料时的摩擦因数和磨损量最小。通过黏度和热重(TG)分析,探讨甲醇燃料改善气缸和活塞环间的摩擦特性的原因,结果表明,甲醇燃料具有较高的黏度和较低的摩擦因数,因而以甲醇为燃料时可以降低磨损  相似文献   

15.
表面粗糙度对边界摩擦与磨损性能的影响   总被引:3,自引:0,他引:3  
本文实验研究了表面粗糙度对线接触GCr15钢摩擦副的边界摩擦与磨损性能的影响。实验所采用的润滑剂为30号机械油加1%的硬脂酸。实验结果表明:存在一最佳表面粗糙度级别,在此级别下,摩擦副的边界摩擦系数最小,耐磨性能最好。  相似文献   

16.
硅油润滑对莫来石基陶瓷摩擦磨损性能的影响研究   总被引:1,自引:1,他引:0  
莫来石基陶瓷具有一系列优异的性能,其在摩擦学领域中的应用越来越广泛。本文研究了硅油润滑对该类陶瓷摩擦磨损性能的影响规律。研究结果表明,硅油可明显地降低莫来石基陶瓷的摩擦系数和磨损率,但却使摩擦系数在稳定阶段的波动幅度增加。硅油润滑条件下,莫来石基陶瓷的磨损机理主要是微观断裂和磨料磨损。  相似文献   

17.
A ball-on-three-flat (BTF) wear tester was used to investigate the boundary lubricating characteristics of oxygenates on a commercial silicon nitride. A wide variety of oxygen-containing compounds were tested neat and/or at 1% by weight in a paraffin oil. Compounds containing hydroxyl functional groups were more effective compared to a base case of neat paraffin oil. Decreases of up to 58% in friction coefficient, and 95% in wear were obtained. In most cases, films were observed in and around the wear scar, suggesting chemical reactions had taken place in the contact.

Additional wear tests, conducted using neat shorter-chain linear primary alcohols, i.e., 6–10 carbons, demonstrated boundary lubrication protection, with longer chain length providing better antiwear performance. A study of several C8 compounds with specific oxygen-containing functional groups (primary alcohol, secondary alcohols, acid, aldehyde, and ketone) demonstrated that the primary alcohol had the strongest boundary lubricating effect. Varying the amount of water in the alcohols had little effect on friction and wear, suggesting that the boundary lubrication effects observed were not merely due to dissolved water in these fluids, but some characteristic chemical interaction with the hydroxyl functional group of the alcohols and acids.  相似文献   

18.
On the behaviour of an oil lubricated fretting contact   总被引:5,自引:0,他引:5  
Although many engineering situations involving fretting damage are lubricated, comparatively little has been reported on this aspect of fretting wear. The viscosity of the lubricating oil and its boundary layer performance are expected to influence fretting behaviour, in addition to the normal fretting parameters, such as stroke and contact force.

This paper examines the effect of lubrication regime, oil viscosity and stroke on the behaviour of a ball-against-flat specimen arrangement. Ball and flat specimens were both manufactured from a bearing steel (SUJ2). Polybutane oils, without additives, covering a range of viscosities from 1 to 10 000 cSt, and fretting strokes up to 35 μm were investigated. The lubricating oil was added to the fretting interface after 0, 3 and 2000 fretting cycles had been completed. Lubrication regime, oil viscosity and stroke were all found to affect fretting behaviour in terms of both coefficient of friction (or traction coefficient) and wear. For strokes less than 9 μm, i.e. for conditions approaching almost complete ‘stick’, coefficient of friction values under oil lubrication were well in excess of double those observed without it. These high values suggest that the oil was unable to penetrate into the fretting contact region, but did maintain a shield around it, so that metal-on-metal contact was maintained under oxygen deprived conditions. The lowest values of steady state coefficient of friction (≈ 0.2) were observed when oil lubrication was applied after 2000 cycles had been completed, indicating that surface roughening and the presence of oxide films and oxidised debris assisted penetration of the lubricant into the fretting contact zone.  相似文献   


19.
纳米二氧化硅对锂基润滑脂摩擦学性能的影响   总被引:1,自引:0,他引:1  
利用溶胶-凝胶法,以正硅酸乙酯为原料制备了纳米二氧化硅微粒,通过透射电子显微镜对其结构进行了表征,利用四球摩擦磨损试验机测定了添加不同含量纳米二氧化硅锂基润滑脂摩擦学性能,采用扫描电子显微镜观察磨损表面形貌。结果表明:制备的纳米二氧化硅是粒径为60 nm左右的球形微粒,具有很高的表面能和表面活性;纳米二氧化硅作为锂基润滑脂添加剂能够提高最大无卡咬负荷和烧结负荷,降低摩擦因数,添加量为2.0%(质量分数)时的润滑剂性能最好,相对应的钢球磨斑直径最小,摩擦因数最低。  相似文献   

20.
The performance of porous bearing under different lubricants and lubricating conditions was experimentally investigated in this study. In order to carry out the experiments, a new test rig was designed to determine the tribological properties of based sintered bronze journal bearings that were manufactured by powder metallurgy (P/M) techniques. To determine the effects of lubricating conditions with and without oil supplement (OS) on the tribological characteristics of these bearings under static loading and periodic loadings, some experiments were carried out using different lubricants. In the tests, pure base oil (SAE 20W50), two fully formulated commercial engine oils (SAE20W50) and lubricating oils with commercial additive concentration ratio of3% were used. The worn surfaces of test bearings were examined using optical microscopy. Experimental results showed that the change in friction coefficient was more stable and in smaller magnitude under static loading than that of periodic loading. In addition, the friction coefficient and the wear rate conducted with base oil resulted in higher values than those of fully formulated oils with and without OS lubricating conditions. The experimental results obtained in this study indicated that the correct selection of lubricant and suitable running conditions were very important on the tribological characteristics of porous bearings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号