首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphite/rolled graphene oxide/ carbon nanotubes (G/R-GO/CNTs) was prepared and applied as a photoanode for water splitting from exhaust car solution. R-GO was prepared from graphene oxide (GO) using the modified Hummer method after settle down in solution for 2 months to roll out. The R-GO coated the graphite (G) electrode using the dip-coating method to form G/R-GO. Finally, CNTs were prepared on the G/R-GO electrode by using the chemical vapor deposition method to form G/R-GO/CNT electrode. The images of field emission scanning electron microscope show the formation of relatively homogenous and uniform R-GO with an average diameter of about 140 nm. Also, the high density of CNTs was observed with uniform diameters distribution and lengths of CNTs up to several micrometers. The values of the current density of G/R-GO/CNT electrode for water splitting are changed from 0.82 mA cm−2 in dark to 1.50 mA cm−2 in light. The value of incident photon-to-current efficiency was 8.4% at 470 nm. The thermodynamic parameters were calculated, in which the activation energy (Ea), enthalpy (ΔH*), and entropy (ΔS*) values were 8.1 kJ mol−1, 29.9 J mol−1, and 56.4 J K−1 mol−1, respectively.  相似文献   

2.
In this study, carbon nanotubes (CNTs) are packed to prepare CNT films with chemical-vapor-deposition method and vacuum filtration, then the films are piled up to make anisotropic three-dimensional CNT sponges (CNS). This sponge is demonstrated to be a promising thermoelectric material. Its cross-plane figure of merit (ZT ) is much larger than that along the in-plane direction (ZT ), and the maximum ZT is about 2.99 × 10−3 at 290 K. This high ZT is attributed to small thermal conductivity of CNS in ⊥ direction, because of small size of pores in CNS and the low k of CNTs along the radial direction.  相似文献   

3.
In the present work, effects of different surface modification methods (surfactant, acid, base, amide, sulfate) on multi walled carbon nanotubes (CNTs) are studied. The dispersion stability of CNTs in aqueous media was confirmed and the effects of the type of treatment on the thermal conductivity of CNT/water nanofluids were investigated. The surface of the CNTs was modified with acid mixtures (H2SO4–HNO3), potassium persulfate (KPS), tetrahydrofuran (THF), octadecylamine and sodium dodecyl sulfate (SDS). UV–visible spectral data indicate that the CNTs treated first with the acid mixture and then with KPS show the best dispersion stability. The basic treatment and SDS treated CNT/water nanofluids (SDS-KCNT/water) showed the highest conductivity of 0.765 W/mK which increases 24.9% of water as a base fluid conductor.  相似文献   

4.
To improve both safe operation and high resource utilization in nuclear power, we propose and investigate the concept of an accelerator‐driven ceramic fast reactor (ADCFR). This reactor type has the potential to operate continuously throughout a 40‐year core life, without fuel shuffling or supplementation. The ADCFR consists of a high‐power superconducting linear accelerator, a gravity‐driven dense granular spallation‐target, and a ceramic fast reactor. The performance of the ADCFR was assessed by using a neutron‐physics simulation, thermal calculations, and a characteristic analysis. The results show that the peak position for the neutron spectrum in the ADCFR is at about 0.1 MeV. This means that it falls with the fast neutron spectrum, and it can convert loaded nuclear fertile material into fissile fuel. Using a burnup simulation, the ideal effective multiplication‐factor (Keff) was calculated by using a combination of subcritical (accelerator‐driven) and critical modes. In 40 year of operation, Keff is obtained from the initial 0.98 to the peak ~1.02 and then to ~0.99. Different granular coolant materials were selected to compare neutron performance. In breeding, the differences are relatively small. The thermal calculation indicates that heat transfer performance of granular makes it possible to meet the required specifications in theory. Finally, the corresponding characteristics, with regard to the 2‐phase coolant, ceramic materials, nuclear safety performance, operation modes, economics, and range of applications were analyzed. Accelerator‐driven ceramic fast reactors can achieve very high levels of inherent safety, good breeding performance, high power‐generation efficiency, and high flexibility in wide range of applications.  相似文献   

5.
Pt nanoparticles supported on carbon nanotubes (Pt/CNTs) have been synthesized from sulfur-modified CNTs impregnated with H2PtCl6 as Pt precursor. The dispersion and size of Pt nanoparticles in the synthesized Pt/CNT nanocomposites are remarkably affected by the amount of sulfur modifier (S/CNT ratio). The results of X-ray diffraction and transmission electron microscopy indicate that an S/CNT ratio of 0.3 affords well dispersed Pt nanoparticles on CNTs with an average particle size of less than 3 nm and a narrow size distribution. Among different catalysts, the Pt/CNT nanocomposite synthesized at S/CNT ratio of 0.3 showed highest electrochemically active surface area (88.4 m2 g−1) and highest catalytic activity for methanol oxidation reaction. The mass-normalized methanol oxidation peak current observed for this catalyst (862.8 A g−1) was ∼ 6.5 folds of that for Pt deposited on pristine CNTs (133.2 A g−1) and ∼ 2.3 folds of a commercial Pt/C (381.2 A g−1). The results clearly demonstrate the effectiveness of a relatively simple route for preparation of sulfur-modified CNTs as a precursor for the synthesis of Pt/CNTs, without the need for tedious pretreatment procedures to modify CNTs or complex equipments to achieve high dispersion of Pt nanoparticles on the support.  相似文献   

6.
Double glazings combined with phase change materials (PCM) result in daylighting elements with promising properties. Light transmittances in the range of 0.4 can be achieved with such facade panels. Compared to a double glazing without PCM, a facade panel with PCM shows about 30% less heat losses in south oriented facades. Solar heat gains are also reduced by about 50%. This results in calculated Ueff-values of −0.3 to −0.5 W m−2 K−1, depending on PCM used. For an optimised panel, we calculated an Ueff-value of −0.6 W m−2 K−1. Although the Ueff-value of a double glazing is −0.8 W m−2 K−1, the PCM-systems may prove advantageous in lightweight constructed buildings due to their equalised energy balance during the course of day. Facade panels with PCM improve thermal comfort considerably in winter, especially during evenings. In summer, such systems show low heat gains, which reduces peak cooling loads during the day. Additional heat gains in the evening can be drawn off by night-time ventilation. If a PCM with a low melting temperature of up to 30 °C is used, thermal comfort in summer will also improve during the day, compared to a double glazing without or with inner sun protection. A homogeneous appearance of the PCM-systems is achievable by use of a concealment, like a screen-print glazing.  相似文献   

7.
In this article, the effect of Carbon Nanotube (CNT) concentration and agitation on the heat transfer rate has been studied during immersion quenching in CNT nanofluids. For this purpose, CNT nanofluids were prepared by suspending chemically treated CNTs (TCNT) at four different concentrations in deionized (D.I) water without using any surfactant. Quench probes with a diameter of 20 mm and a length of 50 mm were machined from 304L stainless steel (SS) and quenched in water and CNT nanofluids with the CNT concentration ranging from 0.25 to 1.0 wt.%. The heat flux and temperature at the quenched surface were estimated based on the Inverse Heat Conduction (IHC) method using the temperature data recorded at 2 mm below the probe surface during quenching. The computation results showed that the peak heat flux increased with an increase in the CNT concentration up to 0.50 wt.% and started decreasing with further increase in the CNT concentration. The enhanced heat transfer performance of CNT nanofluids during quenching at lower concentration of CNTs is attributed to their higher effective thermal conductivity. The reduced heat transfer performance of CNT nanofluids having higher concentration of CNTs is due to the increased viscosity of CNT nanofluids. The effect of agitation on heat transfer rate during quenching has also been studied in this work by stirring the CNT nanofluid prepared with 0.50 wt.% of CNTs which recorded the maximum peak heat flux among the four concentrations. The effect of CNT nanofluid agitation was counter-intuitive and resulted in decreased heat transfer rate with the increase in agitation rate.  相似文献   

8.
A novel electrocatalyst structure of carbon nanotube-supported sulfated TiO2 and Pt (Pt-S-TiO2/CNT) is reported. The Pt-S-TiO2/CNT catalysts are prepared by a combination of improved sol-gel and ethylene glycol reduction methods. Transmission electron microscopy and X-ray diffraction show that the sulfated TiO2 is amorphous and is coated uniformly on the surface of the CNTs. Pt nanoparticles of about 3.6 nm in size are homogenously dispersed on the sulfated TiO2 surface. Fourier transform infrared spectroscopy analysis proves that the CNT surfaces are modified with sulfated TiO2 and a high concentration of SOx, and adsorbed OH species exist on the surface of the sulfated TiO2. Electrochemical studies are carried out using chronoamperometry, cyclic voltammetry, CO stripping voltammetry and impedance spectroscopy. The results indicate that Pt-S-TiO2/CNT catalysts have much higher catalytic activity and CO tolerance for methanol electrooxidation than Pt/TiO2/CNTs, Pt/CNTs and commercial Pt/C.  相似文献   

9.
Carbon nanotube (CNT)-supported platinum modified with HxMoO3 (Pt-HxMoO3/CNT) was prepared and used as an electrocatalyst for methanol oxidation. In the preparation of this electrocatalyst, a platinum precursor was loaded on CNTs and reduced by sodium borohydride in ethylene glycol, resulting in CNT-supported platinum without modification (Pt/CNT), and then the Pt/CNT was modified with HxMoO3 that was formed by hydrolysis and subsequent reduction of ammonium molybdate. The surface morphology, structure and composition of Pt-HxMoO3/CNT and Pt/CNT as well as their activity toward methanol oxidation were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive spectrometry (EDS), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), chronoamperometry (CA), chronopentiometry (CP), and electrochemical impedance spectroscopy (EIS). The results, obtained from TEM, XRD, EDS, and FTIR, indicate that the platinum loaded on CNTs has a face-centered cubic structure with particle sizes of 2–5 nm, and the modification of HxMoO3 on platinum with an atom ratio of Pt:Mo = 2:1 has little effect on the particle size, distribution and structure of the platinum. The results, obtained from CV, CA, CP, and EIS, show that the Pt-HxMoO3/CNT exhibits higher electrocatalytic activity toward methanol oxidation and better carbon monoxide tolerance than Pt/CNT.  相似文献   

10.
This study investigated the hydrogenation and dehydrogenation behavior of Mg2Co nanoparticles and carbon nanotube (CNT) composites using temperature-programmed deposition, Raman spectroscopy, and X-ray diffraction (XRD). We used the mechanical alloying method to prepare nanosized Mg2Co particles on CNTs with three loadings of alloys. The introduction of CNTs showed dehydrogenation, hydrogen desorption starting at 370 °C, with the majority of hydrogen being below 500 °C. This can be explained by the fact that Mg2Co alloy deposited on CNT surface induced the dissociation of hydrogen into two atoms, which were spilt over and then intercalated into the interlayer of CNT. Accordingly, the atomic intercalation enabled the reduction of the hydrogen desorption activation barrier. The spillover mechanism of hydrogen storage can be confirmed by XRD and Raman spectroscopy because of larger interspacing (d0 0 2) and weaker graphite degree (ID/IG) of CNTs after hydrogenation.  相似文献   

11.
Multi-walled carbon nanotubes (CNTs) as produced are usually entangled and not ready to be dispersed into organic matrix. CNTs were treated by mechano-chemical reaction with ball milling the mixture of potassium hydroxide and the pristine CNTs. Hydroxide radical functional groups have been introduced on the CNT surfaces, which enabled to make stable and homogeneous CNT composites. Treated CNTs were successfully dispersed into the palmitic acid matrix without any surfactant. Transient short-hot-wire apparatus was used to measure the thermal conductivities of these nanotube composites. Nanotube composites have substantially higher thermal conductivities than the base palmitic acid matrix, with the enhancement increasing with the mass fraction of CNTs in both liquid state and solid state. The enhancements of the thermal conductivity are about 30% higher than the reported corresponding values for palmitic acid based phase change nanocomposites containing 1 wt% CNTs treated by concentrated acid mixture.  相似文献   

12.
This work reports the morphological and photocatalytic hydrogen generation properties of CNT/Pt composites with and without functionalization by carboxylic/oxygen groups. The composites with and without functionalization were named f-CNT/Pt and CNT/Pt, respectively. Several f-CNT/Pt and CNT/Pt composites with different content of Pt NPs (from 0 to 30 wt%) were synthesized and analyzed by scanning electron microscopy (SEM). Those images revealed that the composites without functionalization presented higher agglomerations of Pt nanoparticles (NPs). Furthermore, the average sizes of the Pt NPs in the named f-CNT/Pt composites (2.3–2.9 nm) were lower than these in the CNT/Pt composites (2.5–3.1 nm). The hydrogen generation rates were also calculated from the decomposition of pure water under UV irradiation (365 nm) and found maximum values of 45.4 and 193.9 μmol·h−1 g−1 for the CNT/Pt and f-CNT/Pt composites (they contained 20 wt% of Pt NPs), respectively. Additional experiments for hydrogen generation were achieved using sodium sulfite as sacrificial agent; in this case, a maximum value of 13850 μmol·h−1 g−1 was obtained for the f-CNT/Pt composite. The f-CNT/Pt composites produced more hydrogen than the CNT/Pt composites because they presented higher content of defects; this was confirmed by the Raman spectra. We also showed that the Pt NPs acted as electron trap centers, which delayed the recombination of the photogenerated electrons and holes, this in turn, enhanced the hydrogen generation rates of the composites (the hydrogen generation was maximized by varying the content of Pt NPs deposited on the CNTs). The CNT/Pt composites presented here were simpler and easier to synthesize than the previous published ternary systems based on TiO2, CNTs and Pt NPs.  相似文献   

13.
Specific heat and thermal conductivity are important thermal properties of high-temperature heat transfer fluids and thermal storage materials for supercritical solar power plants. In the present work, nanofluids composed of ternary carbonate Li2CO3-K2CO3-Na2CO3 (4:4:2, mass ratio) and 1.0 wt.% carbon nanotubes (CNT) were prepared to obtain high-temperature heat transfer and storage media with enhanced specific heat and thermal conductivity. The dispersion of CNTs in the nanofluids was tuned by changing the evaporation temperature (100, 140, 180 and 220 °C) and adding surfactants such as sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), or gum Arabic (GA). The results showed that GA and SDS facilitate good dispersion of CNT in nanofluids at the evaporation temperatures of 140 °C and 180 °C, resulting in the formation of more needle-like nanostructures. The higher increase in the specific heat and thermal conductivity of the nanofluids with SDS at 500 °C was 78.3% and 149.2%, respectively. Additionally, the specific heat of as-prepared ternary carbonate nanofluids exhibits a good thermal stability after 30 cycles of thermal shock experiments.  相似文献   

14.
This study demonstrated the feasibility of a high-performance membrane-electrode-assembly (MEA), with low electrocatalyst loading on carbon nanotubes (CNTs) grown directly on carbon cloth as an anode. The direct growth of CNTs was synthesized by microwave plasma-enhanced chemical vapor deposition using CH4/H2/N2 as precursors. The cyclic voltammetry and electrochemical impedance measurements with 1 mM Fe(CN)63−/4− redox reaction reveal a fast electron transport and a low resistance of charge transfer on the direct growth of CNT. The electrocatalysts, platinum and ruthenium, were coated on CNTs by sputtering to form Pt-Ru/CNTs-CC with carbon cloth for CC. Pt-Ru electrocatalysts are uniformly dispersed on the CNT, as indicated by high-resolution scanning electron microscopy (HRSEM) and transmission electron microscopy (TEM), because the nitrogen doped in the CNT acts as active sites for capturing electrocatalysts. The MEA, the sandwiched structure which comprises 0.4 mg cm−2 Pt-Ru/CNTs-CC as the anode, 3.0 mg cm−2 Pt black as the cathode and Nafion 117 membrane at the center, performs very well in a direct methanol fuel cell (DMFC) test. The micro-structural MEA analysis shows that the thin electrocatalyst layer is uniform, with good interfacial continuity between membrane and the gas diffusion layer.  相似文献   

15.
A ternary Ag/TiO2/CNT photoanode was prepared by grafting Ag nanoparticles on the surface of as-synthesized TiO2/CNT nanocomposite for the photoelectrochemical (PEC) water splitting under visible light irradiance. The ternary composite photoanode was observed to generate four times higher photocurrent density compared to binary TiO2/CNT nanocomposite under visible light irradiance. The Ag nanoparticles on the surface of nanocomposite act as a surface plasmon resonance (SPR) photosensitizer under visible light. The enhanced photocurrent density of Ag/TiO2/CNT ternary photoanode is attributed to the increased light absorption in the visible region, decrease in band-bending and effective interfacial electron transfer due to the synergetic effect of Ag nanoparticles and CNTs. The enhanced charge transfer within the Ag/TiO2/CNT was also confirmed by the electrochemical impedance spectroscopy. This work demonstrates a feasible route to improve the PEC performance of TiO2 towards water splitting under sunlight irradiation.  相似文献   

16.
Birnessite-type manganese dioxide (MnO2) is coated uniformly on carbon nanotubes (CNTs) by employing a spontaneous direct redox reaction between the CNTs and permanganate ions (MnO4). The initial specific capacitance of the MnO2/CNT nanocomposite in an organic electrolyte at a large current density of 1 A g−1 is 250 F g−1. This is equivalent to 139 mAh g−1 based on the total weight of the electrode material that includes the electroactive material, conducting agent and binder. The specific capacitance of the MnO2 in the MnO2/CNT nanocomposite is as high as 580 F g−1 (320 mAh g−1), indicating excellent electrochemical utilization of the MnO2. The addition of CNTs as a conducting agent improves the high-rate capability of the MnO2/CNT nanocomposite considerably. The in situ X-ray absorption near-edge structure (XANES) shows improvement in the structural and electrochemical reversibility of the MnO2/CNT nanocomposite after heat-treatment.  相似文献   

17.
Hydrogen production by steam reforming of ethanol (SRE) was studied using steam-to-ethanol ratio of 3:1, between the temperature range of 150–450 °C over metal and metal oxide nanoparticle catalysts (Ni, Co, Pt and Rh) supported on carbon nanotubes (CNTs) and compared to a commercial catalyst (Ni/Al2O3). The aim was to find out the suitability of CNTs supports with metal nanoparticles for the SRE reactions at low temperatures. The idea to develop CNT-based catalysts that have high selectivity for H2 is one of the driving forces for this study. The catalytic performance was evaluated in terms of ethanol conversion, product gas composition, hydrogen yield and selectivity to hydrogen. The Co/CNT and Ni/CNT catalysts were found to have the highest activity and selectivity towards hydrogen formation among the catalysts studied. Almost complete ethanol conversion is achieved over the Ni/CNT catalyst at 400 °C. The highest hydrogen yield of 2.5 is, however, obtained over the Co/CNT catalyst at 450 °C. The formation of CO and CH4 was very low over the Co/CNT catalyst compared to all the other tested catalysts. The Pt and Rh CNT-based catalysts were found to have low activity and selectivity in the SRE reaction. Hydrogen production via steam reforming of ethanol at low temperatures using especially Co/CNT catalyst has thus potential in the future in e.g. the fuel cell applications.  相似文献   

18.
《传热工程》2012,33(9):821-827
Conventional fluids used for heat transfer applications in automobiles limit the performance enhancement and compactness of the heat exchangers. These problems can be overcome by using the technology of nanofluids. The objectives of this work are to prepare nanofluids and to study their dynamic viscosity and thermal conductivity. Chemically treated carbon nanotubes (CNTs) were added with ethylene glycol (EG) and sonicated using a bath sonicator to have a homogeneous dispersion of CNTs in EG. In this study, the nanofluids were prepared with different concentrations of CNTs varying from 0.12 to 0.4 wt%. The dynamic viscosity of nanofluids was measured using a rheometer over a temperature range of 25°C to 60°C. It was observed that the viscosity of nanofluids decreases with an increase of temperature and enhances with CNT concentration. The nanofluid follows the characteristic behavior of Newtonian fluids. A linear rise in thermal conductivity of ethylene glycol was observed with an increase of CNT concentration. It is concluded that EG–CNT nanofluids are promising to meet the challenges required by automobile systems.  相似文献   

19.
This paper is mainly concerned about the heat transfer behaviour of aqueous suspensions of multi-walled carbon nanotubes (CNT nanofluids) flowing through a horizontal tube. Significant enhancement of the convective heat transfer is observed and the enhancement depends on the flow conditions (Reynolds number, Re), CNT concentration and the pH, with the effect of pH smallest. Given other conditions, the enhancement is a function of axial distance from the inlet, increasing first, reaching a maximum, and then decreasing with increasing axial distance. The axial position of the maximum enhancement increases with CNT concentration and Re. Given CNT concentration and the pH level, there appears to be a Re above which a big increase in the convective heat transfer coefficient occurs. Such a big increase seems to correspond to the shear thinning behaviour. For nanofluids containing 0.5 wt.% CNTs, the maximum enhancement reaches over 350% at Re = 800, which could not be attributed purely to the enhanced thermal conduction. Particle re-arrangement, shear induced thermal conduction enhancement, reduction of thermal boundary due to the presence of nanoparticles, as well as the very high aspect ratio of CNTs are proposed to be possible mechanisms.  相似文献   

20.
A hybrid synthesis protocol that combines electroless plating and the supercritical CO2 (scCO2) technique is developed for the first time to decorate multi-walled carbon nanotubes (CNTs) with Ni nanoparticles. The scCO2 fluid, which is immiscible with aqueous plating solution, renders a heterogeneous Ni deposition reaction and suppresses the lateral growth of Ni, which leads to the formation of nanoparticles. A uniform dispersion of tightly anchored particles, a few nanometers in diameter, on CNTs can be achieved. Since the electroless deposition process can be easily manipulated, large-scale production should be realizable. The constructed CNT/Ni nano-composite exhibits a synergistic property in hydrogen storage performance, which is evaluated using a high-pressure microbalance. The deposited nanoparticles enhance the hydrogen spillover reaction on CNTs, tripling the hydrogen storage amount at room temperature as compared to pristine CNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号